

Software Design Specification
Team Dec 15-12: @PaniniJ

April 25th, 2015

Advisor Dr. Rajan

Client Dr. Rajan

Team Members Dalton Mills
David Johnston
Trey Erenberger

Webmaster
Team Lead
Key Concept Holder

@PaniniJ Software Design Specification 1 / 15

Table of Contents

Table of Contents

1. Introduction to the SDS

2. Design Considerations

2.1. Prior Work

2.2. Primary Design Goal

2.3. Capsule Declaration Syntax and Semantics

2.4. Assumptions and Constraints

2.5. Non-Functional Requirements

2.6. Development Methods

3. Architectural Strategies

4. System Architecture

4.1. System: Annotation Processor

4.1.1. SubComponent: Capsule Artifact Generator

The Capsule Artifact Generator also tells the Duck Future Artifact Generator

SubComponent which ducks will need to be generated.

4.1.2. SubComponent: Duck Future Artifact Generator

4.2. System: Runtime

4.3. System: Lang

5. Policies and Tactics

6. Glossary

@PaniniJ Software Design Specification 2 / 15

1. Introduction to the SDS
The purpose of this Software Design Specification (SDS) is to provide a top-down view
of the design and implementation of @PaniniJ. To supplement this approach, a
glossary of important terms, acronyms, and abbreviations is included, as well as a list
of relevant background resources with direct links to each where available.

The SDS touches on the ways in which @PaniniJ differs from and supplements
PaniniJ, and how @PaniniJ fits into the larger Panini Project. Described within is the 12

overall system architecture of @PaniniJ, followed by the subsystem architecture and
relationships between components, and finally as necessary a detailed design of each
system and subsystem.

The section on System Architecture provides a high-level overview of the division of
responsibilities and functionality of @PaniniJ into subsystems and components. In
certain cases a more detailed description of an individual subsystem or component
will be included in the subsequent section on Detailed System Design.

The intended audience of this document includes developers of @PaniniJ and the
PaniniJ language, including but not limited to the Panini Project research group
headed by Dr. Hridesh Rajan and researchers at other institutions. 3

There are no current @PaniniJ version numbers as the majority of work thus has been
researching design direction creating prototypes in order to understand PaniniJ and
what is required to accomplish the goals of the project.

1 The Panini programming language.
2 More information on PaniniJ and The Panini Projet can be found at http://www.paninij.org/
(March, 2015).
3 Dr. Rajan’s professional homepage can be found at http://www.cs.iastate.edu/~hridesh/.

http://www.paninij.org/
http://www.cs.iastate.edu/~hridesh/

@PaniniJ Software Design Specification 3 / 15

2. Design Considerations

2.1. Prior Work
@PaniniJ is a framework for generating capsules systems which follow the Panini
programming model. There already exists a compiler for (among other things)
generating Panini capsule system from the PaniniJ language. The PaniniJ language is
similar to Java in many ways, however, important differences between Java and
PaniniJ make many tools designed to be used with Java unusable with PaniniJ code.

For example, consider the screenshot below. It shows an excerpt of a valid PaniniJ
program viewed from within the Eclipse IDE. Though this is valid PaniniJ code, the IDE
shows a number of very unhelpful errors.

Image 2.1: Excerpt of a valid PaniniJ program viewed from within Eclipse IDE.

Any existing Java tool (such as Eclipse) cannot correctly interpret and handle almost
any PaniniJ program. Importantly, Java compilers fail to correctly interpret capsules
and thus fail to generate code for them.

Currently, there is very little tooling used in the development of PaniniJ programs.
Generally, a PaniniJ programmer needs to use a plain text editor and manually invoke
the command-line panc program, the custom PaniniJ compiler. This is a far less 4

4 Additionally, there is no practical way to use a debugger to analyze a PaniniJ program.

@PaniniJ Software Design Specification 4 / 15

usable development environment than most modern programmers have come to
expect.

2.2. Primary Design Goal
@PaniniJ is an alternative, re-engineered system for generating Panini capsule
systems. Unlike the existing PaniniJ/panc method, @PaniniJ is designed to be used
with most standard Java development environments and toolchains (e.g. Ant, Maven,
Eclipse and javac).

There are two main reasons why this is possible. First, in our @PaniniJ solution, the
inputs which describe a Panini capsule system are standard Java. Second, @PaniniJ
is built on powerful standard Java tools and APIs, in particular, the Java annotation
processing mechanism and the javax.lang.model API.

2.3. Capsule Declaration Syntax and Semantics
The @PaniniJ capsule declaration syntax is the syntax with which an @PaniniJ
capsule programmer specifies a capsule template and thus the behavior and
properties of an @PaniniJ capsule. We have some freedom to design a syntax and
define associated semantics. @PaniniJ will use the capsule template checker
component to verify that a capsule template’s syntax is valid.

2.4. Assumptions and Constraints
Build Environment
We assume that the end-user environment is a standard Java build environment. Our
annotation processor service should be portable across all such build environment.
However, we are initially testing our system in a Maven/javac build environment and
also Eclipse.

Java Version
We are assuming Java version 1.8 or greater is being used.

Distribution
@PaniniJ should be as plug-and-play as possible. The only steps required to run our
program is

Performance requirements
The resulting code must have comparable speed, performance, etc., as the original
PaniniJ panc compiler version.

@PaniniJ Software Design Specification 5 / 15

Possible and/or probable changes in functionality.
This is a research language so it is anticipated that it will be continually changing.
However, we do not anticipate any changes occurring while we are creating this for our
senior design project.

Annotation Processor Limitations
The annotation processor can only generate new code, it cannot edit or modify code
that the user writes.

2.5. Non-Functional Requirements
NFR 1: The user shall not need to directly manipulate modify or even look at any
generated artifacts. The user need only write the template classes in order to specify a
capsule or signature.
Motivation: We to provide a programming model which allows the developer to be
code at a higher level of abstraction than the boilerplate generated code (i.e. we
support capsule-oriented programming). Furthermore, we do not want to burden the
user with the need to understand any of the generated artifacts in order to.

NFR 2: Limit name collisions and report any name collisions that do occur.
Motivation: We don’t want the user to be unable to use certain words that are used in
the implementations of generated artifacts.

NFR 3: The amount of code required to make a Panini capsule system with @PaniniJ
should be comparable to the amount of code required to make a similar system using
PaniniJ.
Motivation: Our goal is to minimize boilerplate for the user. We want to keep the
amount of code that the user must write to a minimum to accomplish our stated goal.

NFR 4: The capsule declaration syntax should be straightforward, but have the
flexibility to allow the user to solve their problems.
Motivation: We don’t want to force the user to memorize complex syntax in order to
utilize our system. We can save the developer from constantly referencing
documentation by making the @PaniniJ syntax clear and declarative.

NFR 5: Procedure invocation performance should be comparable with that in panc.
Motivation: If performance is not comparable to panc then the annotation processor is
much less effective. It attacks the ultimate purpose of making the application faster
via multi-threading.

@PaniniJ Software Design Specification 6 / 15

2.6. Development Methods
We are using the Rapid Application Development method. This involves creating many 5

prototypes that tackle small problems instead of doing a lot of up-front planning. The
lack of up-front planning is suitable for this project since it is a small portion of a larger
ongoing research project. We expect that the requirements of the project will change
frequently and without warning.

Additionally, the technologies we will be using are completely new to us (e.g.
annotation processing and potentially, pluggable type checkers); as such, too much
up-front planning might provide too optimistic a view of the strength and
appropriateness of these tools within the design. With rapid development of
prototypes we can become familiar with the capabilities of the new technologies
without committing to a single plan and then gauge their appropriateness as we go.

Throughout the development of this project several design refactorings must occur in
order to bring the smaller features and prototypes together in a way which best meets
the project’s goals, constraints, and requirements, as well as the needs of the project’s
stakeholders.

Since features and prototypes developed with the Rapid Application Development
method are somewhat independent, it is necessary that multiple people view code
before it becomes a part of the current design. To accomplish this, we are using pair
programming as often as possible and also using tools such as git and github to 6 7

manage pull requests and code reviews.

5 http://en.wikipedia.org/wiki/Software_development_process#Rapid_application_development
6 http://git-scm.com/
7 https://github.com/

http://en.wikipedia.org/wiki/Software_development_process#Rapid_application_development
http://git-scm.com/
https://github.com/

@PaniniJ Software Design Specification 7 / 15

3. Architectural Strategies
Why didn’t we just make better tooling for PaniniJ? Why didn’t we just make an
Eclipse Plugin?

The stated goal of the project is to make tools which make Panini capsule systems
more accessible to programmers. This could have been achieved by making better
tooling for PaniniJ.

However, we also believe that it may be worthwhile developing an annotation
processor solution for a number of reasons. In particular, an annotation processor is
likely much easier to develop and maintaining than the existing implementation of
panc, a fork of the entire Sun javac compiler.

Furthermore, though panc, is an extension of the standard Java compiler, PaniniJ
code is not easily integrated into existing Java projects. Our project, may make
Capsule-Oriented Programming more usable in Java project than the existing PaniniJ
tools can provide.

Note that there may be certain features that PaniniJ/panc provides, which our solution
cannot provide, for example, certain code analyses and safety checks. However, these
features are currently outside the scope of this project.

Why did we make the capsule declarations native Java classes?
This decision allows the user to use many existing Java tools when developing a
Panini capsule system. Additionally, Java programmers can start making capsule
systems without learning a new programming language, PaniniJ.

Why perform Java source generation?
The boilerplate code for making capsule-like entities is tedious and error prone,
despite being highly a relatively regular translation process. We want to remove the
boilerplate by providing a standard model which can be verified and tested. By using
Java source generation, we can generate a layer of code that includes the boilerplate
based on source code provided by the user.

Why use an Annotation Processor for source artifact generation?
Using an Annotation Processor gives us a detailed look at the user’s source code
through the java standard library, javax.api.model. This library provides the tools to
analyze java source code which pairs with the Annotation Processor’s ability to hook
into specific sections of the source code. Together they provide a system of source

@PaniniJ Software Design Specification 8 / 15

analysis that does not require us to write a Java interpreter which would be of lesser
quality compared to the Java standard API libraries.

Why did use Java for capsule generation?
We chose to implement the capsule generation in Java because of the team’s
familiarity with writing Java code. Java also has standard API’s that allow us to cleanly
work with source code. Java also has a robust annotation system that we can use to
analyze source code.

User interface paradigm:
Our goal with @PaniniJ is to allow developers to use common Java tools to develop
Panini programs. We want to get out of the way of the developer so that they can use a
familiar environment and begin working with Panini quickly.

From a code perspective, we want @PaniniJ to have a clear, declarative syntax that
feels very similar to classic java. We accomplish this by making the hooks into the
@PaniniJ system each have a singular clear purpose.

Concurrency Model:
Our annotation processor is called from the standard javac process, which may be of a
different concurrency model. Our code is synchronous and will execute in that manner
when called from javac.

@PaniniJ Software Design Specification 9 / 15

4. System Architecture
@PaniniJ can be described in three components which contain their own discrete
responsibilities.

1. Annotation Processor
2. Runtime
3. Lang

In the codebase, these components have been divided into their own java packages
and bundled under the at-panini-j JAR file.

4.1. System: Annotation Processor
The annotation processor system (a.k.a. @PaniniJ) drives all compile-time behavior.
It is responsible for delegating to any necessary input validation components (e.g.
CapsuleChecker) and any necessary artifact generation components (e.g.
MakeDuck). It is the master control which delegates to other components.

Furthermore, the annotation processor provides an interface to certain resources
provided by the standard annotation processing API to be used by the components to
which it delegates. For example, a Filer object is encapsulated by @PaniniJ
ultimately used by MakeDuck for creating new duck artifacts.

The following subsections describe each of the components which are a part of the
annotation processor system.

4.1.1. SubComponent: Capsule Artifact Generator
User classes which are annotated with @Capsule are called Capsule Templates.
Capsule Templates define a capsule to be generated. The Capsule Artifact Generator
SubComponent creates Capsules based on the user-created template. The Capsule
Artifact Generator will create four different runtime profiles (Thread, Monitor, Serial,
and Task) for each capsule. These generated artifacts are named accordingly:

● CapsuleName$Thread.java
● CapsuleName$Monitor.java
● CapsuleName$Serial.java
● CapsuleName$Task.java

The Capsule Artifact Generator also tells the Duck Future Artifact Generator
SubComponent which ducks will need to be generated.

@PaniniJ Software Design Specification 10 / 15

4.1.2. SubComponent: Duck Future Artifact Generator

The primary responsibility of this module is to generate the Duck Future Java classes.
These are an essential part of making synchronous methods calls act as
asynchronous procedures invocations. They serve two roles in the system. Firstly, they
act as messages added to be added to a capsule’s queue. Secondly, they act as
invisible futures which are returned to the user to encapsulate the results of a
procedure call.

The core functionality of duck futures remain the same in this system as it is in panc.
This system differs in an attempt to reduce the number of Duck classes generated by
allowing Duck Shapes to be shared by different capsules. In the panc implementation,
Ducks were generated by capsule name and procedure return type. Our
implementation instead creates ducks based on the return type and parameter types.

Additionally, any object (i.e. non-primitive) arguments (e.g. String or BufferedReader)
are cast to an Object when they are stored in a Duck Future. This abstraction again
reduces the number of ducks which need to be generated. When the duck is
consumed by a capsule’s run() method, the abstracted parameters are cast back to
their original types and passed into the correct method of the stored instance of the
template class.

An example of the ducks generated by both systems follows:

Figure 4.2 Duck Generation using PaniniJ’s panc vs. @PaniniJ

Our Duck Future implementation also differs in the way that the passed parameters
are stored. In panc, each time a procedure is matched to a Duck class instance fields
are added to match the types of the procedure’s parameters. The current panc

@PaniniJ Software Design Specification 11 / 15

implementation has an odd quirk when a Duck is created where a parameter is
assigned to all instance fields that it can could possibly match. In a large system this
can cause ducks to store much more information than is needed. Our method is tied
tightly to the shape of the procedure (the composition of its parameter types) and
avoid the aforementioned quirk by having clearly defined storage for the parameters.

4.2. System: Runtime
One of the major modules in our system is segmented into the Runtime package.
This package includes the capsule interface, abstract capsule profile classes, and the
interfaces and abstract classes for Duck Futures. The Capsule interface included in
this package contains the methods that all threading profiles implement. These
methods, which have analogs in the Thread class, include: start, shutdown, push,
join, and exit. This interface is implemented by the abstract classes that are made
for each threading profile: Monitor, Serial, Task, and Thread. These abstract
classes contain the implementation details that all capsules of that profile share.

As mentioned, this package also includes the interfaces and abstract classes for Duck
Futures that are utilized by the capsules to consume Ducks. There exists two types of
procedure calls in the PaniniJ system: procedures with a return value and procedures
with no return value. The procedures that have no return value are the baseline for our
Duck Futures. Ducks based off these procedures implement the Panini$Message
interface which is used to tie a Duck and the procedure it is based on together. The
abstract class SimpleMessage is included to be used for the shutdown and exit
calls on capsules. The capsule’s run method relies on the Panini$Message interface
to resolve the Duck Futures in its queue.

The second type of procedures, those that return values, utilize the remaining classes
in the runtime package: Future and ResolvableFuture.

4.3. System: Lang
Many common Java classes in java.lang are marked final (e.g. String, Integer, etc.).
Our system (as it is currently designed) and panc cannot make a duck which mocks a
class marked final. Therefore, procedures which return one of these types will need to
return the actual type, not a transparent future. Therefore, this is a case in which
common classes (e.g. String) do not provide the user with implicit concurrency.

As a workaround for this problem, we have provided a package org.paninij.lang which
mirrors java.lang which includes reimplementations. These reimplementations are not
marked final and can thus be mocked as ducks and have implicit concurrency.

@PaniniJ Software Design Specification 12 / 15

@PaniniJ Software Design Specification 13 / 15

5. Policies and Tactics
Package Structure: The naming conventions for the project are adopted from the
system architecture; there is a direct mapping between package names and the names
of systems, components, and subcomponents. With the exception of auto-generated
classes, all @PaniniJ code is a subpackage of the org.paninij package.

Naming Conventions: Many of the class names in the project are delimited by a dollar
sign ($). These describe classes that are auto-generated or do the generating of said
classes. Auto-generated classes need this in order to prevent collisions with the user’s
code (since the auto-generated classes are kept in the same package as the users
code). Additionally, many of the variables and method names on the generated
classes start with panini$, this is again to prevent collisions with code written by the
user.

Coding Guidelines and Conventions: The @PaniniJ codebase uses a slight
modification of the standard Java code conventions. Any modifications, such as
placement of return carriages before entering the body of a method, have been
retained as artifacts of the original PaniniJ code conventions.

@PaniniJ Software Design Specification 14 / 15

6. Glossary

Artifact, also
Source Artifact,
Generated
Artifact

A Java source code artifact created by @PaniniJ. Key examples
include capsule classes and duck classes.

Artifact Generation The process by which @PaniniJ processes a set of user-defined
template classes and automatically generates/creates derived
artifacts.

Capsule An actor-like software construct defined in Panini which
● uniquely owns its state variables,
● provides a set of procedures which can be invoked, and
● has an execution profile by which computations of invoked

procedures are performed.

Capsule, Child A capsule declared within the definition of another capsule. Note that
each design argument of some capsule C is not counted as a child
capsule of C (though they may well be child capsules of some other
capsule).

Capsule, Leaf A capsule having no children. A leaf capsule may be either passive or
active.

Capsule, Passive A capsule having no user-defined run() declaration.

Capsule, Active A capsule having a user-defined run() declaration.

Capsule, Root A capsule which is active and has no

Declaration,
Capsule

Declaration,
design()

Where the user defines the set of design arguments and specifies
what capsules are to be wired to it’s child capsules.

Declaration,
init()

Where the user defines initialization code for a capsule’s state
variables.

Declaration,
Procedure

Declaration, run() Where the user defines custom run behavior for a capsule. If a
capsule has a run declaration, it is called an active capsule.
Otherwise, it is called a passive capsule.

@PaniniJ Software Design Specification 15 / 15

Declaration,
Signature

Capsule
Requirements

The set of capsules S which must be passed to a capsule C in order
for C to be well-defined.

Execution Profile The mechanism or policy by which a capsule’s procedure invocations
are processed. For example, in the case of the thread execution
profile, procedure invocations are submitted to a queue and
processed one-by-one by that capsule’s own dedicated thread.

Future A thread-safe object/class which represents a result of a task. We say
that a future is resolved when the task is complete and the result is
ready to be used. If a thread tries to use this result before it has been
resolved, then the thread will block until it is resolved.

Duck Future An object/class which is a mockup of one of the user’s
objects/classes but also acts as a future, resolvable by the panini
runtime.

Method A regular Java method. (This is distinct from the Panini concept of a
procedure.)

Method Call A regular call to a Java method. (This is distinct from the Panini
concept of procedure invocation.)

Oracle When testing whether some computation has computed some result
correctly, an oracle can be queried for the result which that
computation should have computed.

Panini The abstract programming model which defines the semantics of a
system of interacting capsules. TODO: Add Reference

PaniniJ A research language similar to Java which adds support for the
capsule-oriented programming as defined in the Panini programming
model. TODO: Add Reference

@PaniniJ The system described in this design document.

Procedure A panini analog of a method. A procedure is the user-defined code on
a capsule’s interface which can be invoked (i.e. called), potentially by
other capsules or other threads. Arguments can be passed and an
object can be returned. Importantly, the returned object can be a duck
future.

Procedure
Invocation

A panini analog of a method call. (See Procedure.)

@PaniniJ Software Design Specification 16 / 15

Shape A description of a method’s return and argument types. This is
essentially the information in a method signature aside from its
names. By extension, we also say that procedures have shape.

Signature A Panini analog of a Java interface. Each signature specifies a set of
procedures. In order for a capsule to implement a signature, it must
have a definition matching the shape and name of each procedure in
that signature.

State Variable,
 also state

A Panini analog of an instance variable on a Java object. A state
variable is a variable attached to a capsule instance. They can only be
accessed and modified by the init() declaration and procedures of the
capsule which owns them.

System Topology A network of capsules.

Template Class A Java class annotated with either @Capsule or @Signature which
specifies the elements of a capsule or signature, respectively. For
example, some elements which a capsule template class is used to
define are the procedure definitions, the define() declaration, and child
capsule declarations. It is from processing a set of template classes
that @PaniniJ generates a set of source artifacts.

Wiring The process of initializing a system of capsules with references to
one another according to the user-defined system topology.

