
@PaniniJ: Generating Capsule
Systems from Annotated Java
Dec15-12: Trey Erenberger, Dalton Mills, and David Johnston

Overview
● Project Foundations: Capsule Oriented Programming
● Goals of @PaniniJ
● How It Works
● Usability and Maintainability Improvements

Project Goal

Make Capsule Oriented Programming more
accessible to Java programmers

Concurrent Programming

Concurrent Programming in Java is Hard

Capsule Oriented Programming

One can think of it like a design pattern.
● Capsule: Like an object with a thread inside.
● System of Capsules: A collection of capsules

sending requests to each other.
● Write sequential code; asynchronous code.
● String s = fooCapsule.bar(“Hello, world!”);

PaniniJ: The Existing Solution

● PaniniJ is a capsule-oriented language.

● Language is similar to Java.

● Modified Java compiler (panc) compiles PaniniJ code.

● Auto-generate boilerplate concurrent capsule code.

● Correct by construction concurrency.

The Problem With PaniniJ: Few Development Tools

Build an Eclipse Plugin for PaniniJ to:
● Fix red squiggles
● Provide useful compilation errors & warnings
● Enable code completion & IDE features

Initial Project Specification

Eclipse Plugin

Pro: It would work.
Con: IDE lock in
Con: Maintainability hurdles
Con: Usability hurdles

Client Goals

Capsule Oriented Programming shall be:
● More usable by Java programmers.
● More compatible with existing Java tools.
● Less complex to use within Java projects.

Alternative: Compiler Plugin

Pro: Core Java Feature (Annotation Processor)
Pro: IDE Independent
Con: Required Reimplementation Functionality of PaniniJ

Deciding Factor: Use Standard Tools

Standard compiler plugin strategy met all 3 goals.

Bring panini to tools rather than tools to panini.

@PaniniJ: Our Solution
● The user defines a set of

capsule templates as Java
classes.

● Each template describes
properties and behavior of
the desired capsule.

● @PaniniJ generates the
concurrent Java code
required for such a
capsule.

Code Generation

User’s Capsule
Templates

(.java files)

Auto-Generated
Source Artifacts

(.java files)

Executable
Capsule System

(.class files)

Annotation Processing Pipeline

Capsule
Template

Capsule Interface

Capsule$Thread

Inter-Capsule
Messages

@PaniniJ
Annotation
Processor

Java Compiler

Executable
.class files

Many Artifacts are Generated From One Capsule Template

Capsule System Includes Many Artifacts From Many Capsule Templates

User’s Capsule Template

User’s Capsule Template

Capsule Interface

Capsule$Thread

Inter-Capsule
Messages

Generated Capsule Interface

User’s Capsule Template

Capsule Interface

Capsule$Thread

Inter-Capsule
Messages

Generated Multithreaded Wrapper

User’s Capsule Template

Capsule Interface

Capsule$Thread

Inter-Capsule
Messages

Generated Message Wrapper

User’s Capsule Template

Capsule Interface

Capsule$Thread

Inter-Capsule
Messages

Static Checks

Static Checking
Exposing Panini Model via IDE
● Rules identified and implemented as checks.
● Reported from annotation processor
● Violations displayed in context
● 45 checks implemented

Static Checking in Eclipse

Static Checking in NetBeans

Improving Maintainability
and Usability

Annotation Processor

PaniniProcessor: Refactored Capsule Processing Dataflow

@Capsule
Template
(.java) Capsule

Artifacts
(.java)

Capsule
Template
Checks

Capsule
Model Capsule

Artifact
Factories

Message
Artifact

Factories

Message
Artifacts
(.java)

Return
Type

Models

Param
Type

Models

Procedure
Models

Testing Methods
● Invoke compiler with Maven
● Programmatically invoke compiler with javax.tools
● Unit testing with Google’s compile-testing

Improving Testing

Getting Started Website

Usability: Documentation

Annotation Processor Javadoc

Client Goals

Capsule Oriented Programming shall be:
● More usable by Java programmers.
● More compatible with existing Java tools.
● Less complex to use within Java projects.

Questions?

Questions?

● Background: Capsules and PaniniJ
● Identify (specific) client goals
● Reformulated project as @PaniniJ
● Built working prototype

Spring Semester

Fall Semester
● Refine Prototype into Product

○ Processor Refactor
○ Unit & Integration Tests

● Documentation
● Usability Enhancements

○ Static Checks
○ Setup/Compile/Run Ease

● v0.1.0 release

Example Program:
“Hello, World!”

“Hello World” Example

Console
Writes a string

Greeter
Stores and sends a

greetingHelloWorld
Creates and drives activity

“Hello World” Example

Console
write(String)

Greeter
greet()

HelloWorld
run()

“Hello World” Example

Console

Greeter {
 @Imports Stream s
}HelloWorld {

 @Local Greeter g;
 @Local Console c;
}

“Hello World”: Capsule Template Syntax

● @Capsule

● User-defined
procedure

Console

Greeter
HelloWorld

“Hello World”: Capsule Template Syntax

● @Wired

● init()

● User-defined
procedure

Console

Greeter
HelloWorld

TODO: Change annotations!

“Hello World”: Capsule Template Syntax

● @Local

● design()

● run()

● imports()

Console

Greeter
HelloWorld

TODO: Change annotations!

Designing Capsule Artifact Inheritance

Designing Additional Message Types

Background: Our Client

● ISU Laboratory For Software Design
● Advisor: Dr. Hridesh Rajan
● Research:

○ Software Engineering

○ Programming Language Design

● Collaborators: Panini Project Grad Students

Background: Panini Project Vision

Make efficient programming abstractions which increase
productivity and decrease maintenance costs by making

concurrent programming less error-prone.

Make concurrency less complicated.

Development Process
● Rapid Application Development

○ Many prototypes which tackle small problems
○ Documentation along the way

● Tools Used
○ git, GitHub, GitHub Issues, GitHub wiki
○ Eclipse, Maven

