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Section 1: Project Overview 
The @PaniniJ project is intended to provide tooling to enable the Panini programming model 
from within the Java ecosystem. We were initially  given the source to the existing 
implementation of Panini in Java, PaniniJ, with the goal of developing Eclipse tools for the 
PaniniJ language. 
 
PaniniJ was a fork of the entire standard Java compiler that had been modified by members 
of the Software Design Laboratory to allow new keywords and syntax specific to capsule 
programming. ​The PaniniJ language is similar to Java in many ways, however, important 
differences between Java and PaniniJ make many tools designed to be used with Java 
unusable with PaniniJ code. 
 
We began our project by investigating possible ways to develop these Eclipse tools for 
PaniniJ. However, in discussion with our client, we soon realized that this route would not 
likely lead to a maintainable product, and we therefore chose to explore other designs. 
 

 
Figure 1:​ The PaniniJ compiler worked, but other tools didn’t know the PaniniJ language. This is 
an image of valid PaniniJ code displayed from within the Eclipse IDE. 
 
During this exploration we considered numerous strategies to accomplish our overall goal to 
“provide tooling for PaniniJ” and we ultimately discovered that PaniniJ itself needed to be 
adjusted. Our client approached us with the idea of using annotation processing in order to 
write a Java compiler plugin. This would allow us to hook into the Java compiler and generate 



code that would support the Panini model. Essentially, PaniniJ was already generating 
additional Java source code, but it did so using a fork of the entire Oracle Java compiler. 
Clearly, this would be hard to maintain, since should be updated with ongoing changes to the 
Java compiler. 
 
We moved forward with developing an annotation processor, and we reimplemented the 
functionality of the existing PaniniJ compiler. We adapted the syntax of the PaniniJ language 
by converting the PaniniJ keywords into annotations. These annotations allowed for the code 
written by the user to be 100% valid Java. This method can be used with any 
standards-compliant Java compiler. This should allow our project to be much easier to 
maintain as future versions of Java are released. 
 

 
Figure 2:​ PaniniJ features were ported to annotations which allowed Java IDE’s to handle and 
perform Java syntax and type checking. 
 
Our version, @PaniniJ, should now be completely compatible with any standards-compliant 
Java tooling (i.e. compilers, build tools, and IDEs). We have tested our compiler plugin with 
Eclipse, Netbeans, Oracle’s ​javac​, and Maven. We are also able to provide real-time error 
checking to make sure that the user’s code follows the somewhat exacting requirements of 



the Panini model. These error messages are integrated right along-side plain-old Java 
language syntax errors, so the way in which or system gives feedback to the user should be 
completely natural for Java developers. We were able to accomplish this in an IDE/tool 
agnostic way that ensures that @PaniniJ has can be used with a huge range of standard Java 
development tools, while keeping @PaniniJ easily maintainable by a small team. 
 

 

 
Figure 3:​ Using standard Java compiler methods, @PaniniJ is able to produce detailed custom 
errors and display them just like Java errors. This image is of @PaniniJ code in Eclipse and 
Netbeans that violates a tenet of the Panini model.  



Section 2: Revised Project Design 
The core of @PaniniJ is organized into three packages, each of which contain its own set of 
responsibilities: 
 

1. lang​: contains the annotations which ​proc​ consumes. 
2. runtime​: components which are necessary at runtime (e.g. thread pool managers). 
3. proc​: the annotation processor itself. 

 
The first two, which are required for both compiling and running a capsule system, are 
included in the ​at-paninij-runtime​ JAR file. All three packages are included in the 
at-paninij-proc​ JAR file. 
 

org.paninij.lang 
This is where user-facing @PaniniJ class definitions are kept. These classes fall into two 
categories. The first category are the annotations which the user applies to their code (e.g. 
@Capsule​ and ​@Signature​). 
 
The second category arises from a technical challenge and requires a little more explanation. 
Many common Java classes in ​java.lang​ are marked final (e.g. String, Integer, etc.). Our 
system (like PaniniJ before it) cannot make a duck which mocks a class marked final. 
Therefore, procedures which return one of these types will need to return the actual type, not 
a transparent future. Consequently, we cannot provide the user with explicit concurrency 
when they use these these common Java classes cannot user with implicit concurrency. 
 
As a workaround for this problem, we have placed reimplementations of these common types 
within ​org.paninij.lang​ types. Our package mirrors ​java.lang,​ but these 
reimplementations are not marked final and can thus be mocked as ducks and have implicit 
concurrency. 
 

org.paninij.runtime 
The ​org.paninij.runtime​ ​package is another major modules in our system is 
segmented into. This package includes the capsule interface, abstract capsule profile 
classes, and the interfaces and abstract classes for Duck Futures. The ​Capsule ​interface 
included in this package contains the methods that all threading profiles implement. These 
methods, which have analogs in the Thread class, include: ​start​, ​shutdown​, ​push​, ​join​, 
and ​exit​. This interface is implemented by the abstract classes that are made for each 
threading profile: ​Monitor​, ​Serial​, ​Task​, and ​Thread​. These abstract classes contain the 
implementation details that all capsules of that profile share. 



 
As mentioned, this package also includes the interfaces and abstract classes for Duck 
Futures that are utilized by the capsules to consume Ducks. There exists two types of 
procedure calls in the PaniniJ system: procedures with a return value and procedures with no 
return value. The procedures that have no return value are the baseline for our Duck Futures. 
Ducks based off these procedures implement the ​Panini$Message​ interface which is used 
to tie a Duck and the procedure it is based on together. The abstract class ​SimpleMessage 
is included to be used for the ​shutdown ​and ​exit ​calls on capsules. The capsule’s run 
method relies on the ​Panini$Message​ interface to resolve the Duck Futures in its queue. 
 
The second type of procedures, those that return values, utilize the remaining classes in the 
runtime package: ​Future ​and ​ResolvableFuture​. 
 

org.paninij.proc 

Overview of Annotation Processing Pipeline 

Java provides the ability write custom annotations and custom annotation processor. Java 
developers are already familiar with annotations such as ​@Override​ and ​@Suppress​.  
 
In order to approximate the expressiveness of the PaniniJ language, replaced PaniniJ-specific 
keywords with a create a handful of new Java annotations. For example, the ​capsule 
keyword in PaniniJ became the ​@Capsule​ annotation in equivalent @PaniniJ programs. 
 
User-defined classes annotated with @Capsule are called ​capsule templates​. The name 
follows from the fact that they serve as a template in the automatic generation of additional 
artifacts. If our compiler plugin is present on the classpath when when a Java compiler is 
tasked to compile one of these capsule template classes, the Java compiler will trigger our 
custom annotation processor, ​org.paninij.proc.PaniniProcessor​. 
 

 
Figure 4:​ A high-level view of the process that converts user template code into capsule 
systems. 
 



While executing, our annotation processor uses the annotation processing API to inspect the 
interfaces of the classes which the user has supplied. Note that this API is limited to only 
inspecting input classes, not modifying them. Therefore, like many other annotation 
processors, ​proc​ does its work by creating new source artifacts. These new artifacts 
essentially wrap the user-defined code with concurrent code according to the Panini 
programming model. (The technical details of the generated files are quite similar to files 
which would have been created by ​panc​, however there are some important technical 
differences which arose from limitations of the compiler plugin API and restrictions induced 
by the Java type system.) 
 
These generated artifacts essentially wrap the user’s code to form an executable system of 
concurrent capsules. This lets us hide complicated and error-prone interactions between 
capsules hidden from the user. 
 
Our processor emits these newly generated Java files, and they are passed along with the rest 
of the user’s source code to be compiled. The user’s classes and the @PaniniJ-generated 
classes are used together to form an executable capsule system. 

Overview of Pipeline Within Annotation Processor 
As discussed above, the job of the annotation processor is to take the user’s capsule 
templates as input and to generate new concurrent wrapping classes as output. These 
outputs are generated in adherence to the Panini programming model and thus eliminate the 
possibility of certain concurrency bugs by construction. 
 
Within this process of inspecting inputs and generating outputs are a number of stages. The 
following image shows the processing pipeline within our annotation processor. 



Figure 5:​ @PaniniJ processor pipeline within the processor itself. The user’s source code is 
taken as input and various Panini-specific artifacts are generated as output. 
 
The annotation processor system (a.k.a. ​@PaniniJ​) drives all compile-time behavior. It is 
responsible for delegating to any necessary input validation components (e.g. 
CapsuleChecker​) and any necessary artifact generation components (e.g. ​MakeDuck​). It is 
the master control which delegates to other components. 
 
The following subsections describe each of the components which are a part of the 
annotation processor system. 

Sub-Component: Checks 
@PaniniJ will generate errors when a user violates a some property of the Panini 
programming model or the @PaniniJ syntax. In all, we implemented about 45 distinct checks. 
 
These errors are reported just as Java programmers expect: in IDE’s like Eclipse and 
Netbeans, these errors are reported via red squiggly lines and context boxes at the point of 
failure; when running the compiler on the command line, error messages are printed along 
with line numbers. 

Sub-Component: Models 
Since the Panini programming model has several differences from the Java programming 
model, we decided it would be the most flexible to translate components of the Java model 
(classes, methods, interfaces, etc) into components of the Panini model (capsules, 
procedures, signatures, etc). With this abstract-syntax-tree like structure of Panini 
components, we are able to put the artifact generators in terms of the Panini programming 
model. Additionally, this structure could be created programmatically.  



Sub-Component: Capsule Artifact Generator 
User classes which are annotated with ​@Capsule​ are called Capsule Templates. Capsule 
Templates define a capsule to be generated. The Capsule Artifact Generator SubComponent 
creates Capsules based on the user-created template. The Capsule Artifact Generator will 
create four different runtime profiles (Thread, Monitor, Serial, and Task) for each capsule. 
These generated artifacts are named accordingly: 
 

● CapsuleName​$Thread.java 
● CapsuleName​$Monitor.java 
● CapsuleName​$Serial.java 
● CapsuleName​$Task.java 

The Capsule Artifact Generator also tells the Duck Future Artifact Generator SubComponent 
which ducks will need to be generated. 

Sub-Component: Message Artifact Generator 
@PaniniJ uses several distinct methods to allow capsules to invoke procedures on each 
other. It is necessary to have these different methods because the primary method, duck 
futures, are unable to support procedures due to properties of their return type. We also use 
explicit futures via the ​Future​ interface in ​java.util.concurrent​ package of the 
standard Java API. Finally we allow a procedure to have blocking behavior where the calling 
capsule halts execution until the result is returned. A user specifies the behavior of a 
procedure by using the provided annotations: ​@Duck​, ​@Future​, and ​@Block​. 
 
Each of these methods extends the abstract class ​MessageFactory​ to produce the version 
of the message artifact requested by the user’s template.  
 
The ​DuckMessageFactory​ handles the production of the implicit duck futures.These duck 
futures are an essential part of making synchronous method calls act as asynchronous 
procedures invocations by acting as invisible futures which encapsulate the results of the 
procedure while still allowing the capsule continue executing. 
 
The core functionality of duck futures remain the same in this system as it is in ​panc​. 
@PaniniJ’s duck system differs in an attempt to reduce the number of duck classes 
generated by allowing “duck shapes” to be shared by different capsules. In the ​panc 
implementation, ducks were generated by capsule name and procedure return type. Our 
implementation instead creates ducks based on the return type and parameter types. 
 
Additionally, any object (i.e. non-primitive) arguments (e.g. String or BufferedReader) are cast 
to an ​Object​ when they are stored in a duck future. This abstraction again reduces the 
number of ducks which need to be generated. When the duck is consumed by a capsule’s 



run()​ method, the abstracted parameters are cast back to their original types and passed 
into the correct method of the stored instance of the template class.  
 
An example of the ducks generated by both systems follows: 

 
Figure 6:​ Duck Artifacts: Duck Generation using PaniniJ’s ​panc​ vs. ​@PaniniJ. 
 
In addition to ducks, we also allow for explicit futures to be used within a capsule system with 
the ​@Future​ annotation. Explicit futures are the standard method of calling java methods 
asynchronously in traditional concurrent java programming. Explicit futures do not have the 
restrictions that duck futures have with return types and yield better performance than 
blocking behavior. The downside to this method is that the user must handle the unpacking of 
the future instead of the panini system doing it for them.  
 
Finally, @PaniniJ allows developers to specify blocking behavior for procedures with the 
@Block annotation. This behavior has no restrictions on return type, but has a performance 
downside as the calling capsule must wait for the result before it can continue executing. A 
potential application of the blocking behavior is when a user wants to intentionally 
synchronize the order of procedure calls. 
 
The Java source files generated by these different capsule and message factories produce 
artifacts which are then combined and ran through the standard java compiler. The resulting 
class files represent the concurrency safe capsule system that the user described in their 
annotated templates.  
 
 



 
Figure 7:​ Example flow between user written code, generated code, and an executable capsule 
system. 
 
 

  



Section 3: Implementation Process Details 
We used the Rapid Application Development method.  This involved creating many prototypes 1

that tackle small problems instead of doing a lot of up-front planning. The lack of up-front 
planning was suitable for this project since it is a small portion of a larger ongoing research 
project. We expected that the requirements of the project would change frequently and 
without warning. 
 
Additionally, the technologies we will be used were completely new to us (e.g. annotation 
processing and potentially, pluggable type checkers); as such, too much up-front planning 
might provide too optimistic a view of the strength and appropriateness of these tools within 
the design. With rapid development of prototypes we became familiar with the capabilities of 
the new technologies without committing to a single plan and then gauged their 
appropriateness as we went. 
 
Throughout the development of this project several design refactorings occurred in order to 
bring the smaller features and prototypes together in a way which best met the project’s 
goals, constraints, and requirements, as well as the needs of the project’s stakeholders. 
 
Since features and prototypes developed with the Rapid Application Development method are 
somewhat independent, it was necessary that multiple people viewed code before it became 
a part of the current design. To accomplish this, we are used pair programming as often as 
possible and also used tools such as git  and github  to manage pull requests and perform 2 3

code reviews. 
  

1 ​http://en.wikipedia.org/wiki/Software_development_process#Rapid_application_development  
2 ​http://git-scm.com/  
3 ​https://github.com/  

http://en.wikipedia.org/wiki/Software_development_process#Rapid_application_development
http://git-scm.com/
https://github.com/


Section 4: Testing Process and Testing Results 
Developing tests for our annotation processor was very important, since our project will be 
continued on by the ISU Laboratory for Software Design after we are finished. 
 
While developing the artifact generation code, we were able to perform a good deal of simple 
testing by simply writing input @PaniniJ programs and running our generated outputs through 
the Java compiler. We could then run these capsule artifacts to see whether they behaved as 
expected. However, automatic execution of these test capsule systems has not yet been 
added to the project. 
 
This strategy works for capule systems which follow all of the @PaniniJ syntax rules, but we 
also needed to check that all of our capsule checks worked. For this we needed to check that 
malformed inputs reported appropriate errors. 
 
To test each of these checks, we used JUnit tests to start the annotation processor with 
some malformed input. The JUnit tests only pass when a panini check fails. 
 
Finishing the 0.1.0 release of the @PaniniJ processor was our final goal for development on 
this project. It was imperative that the static checks of user code functioned properly as it is a 
primary tool for new developers to learn a new system. It was also requisite that our code 
generation produced valid, concurrently safe Java source code. We made a point of writing a 
unit test for each of the static checks that would clearly show whether they are working as 
anticipated which has allowed us to validate that that portion of the user experience is 
functioning.  
 
We have also been maintaining a suite of example @PaniniJ projects that are run through our 
processor and then through the Java compiler. The pass through the Java compiler ensures 
that our generated code passes static type checking and will alert us to any problems with 
malformed generated source code. As of the release of 0.1.0, both prongs of our testing 
method were fully functioning and producing positive results. 
  



Appendix I: Operation Manual 

Operation Manual Overview: 
These are the overall steps to setting up an @PaniniJ project in Eclipse: 

1. Create an Eclipse Project 
2. Download the @PaniniJ jar 
3. Enable annotation processing 
4. Add at-paninij annotation processor to your build 
5. Add the at-paninij jar as a referenced library 

1 - Setup the project to use JRE 1.7 or greater 
When you create a new project, be sure to choose Java Runtime Environment 1.7 or greater, 
this is necessary for the annotation processing to work correctly. 
 

 



2 - Download the at-paninij jar 
Download the latest processor (​at-paninij-proc-v0.1.0.jar​) from the github releases 
page: ​https://github.com/hridesh/panini/releases​. 

3 - Enable annotation processing 
Enable annotation processing by right clicking on your project in the project explorer and 
choosing "properties." Browse to Java Compiler > Annotation Processing and check the 
“Enable project specific settings” checkbox and “Enable annotation processing”. 

 
Once you hit Apply, Eclipse will inform you that a rebuild on the project is required. You can 
click yes to rebuild the project now. 
 
Note that the "Generated Source Directory" is where the sources that the annotation 
processor automatically generates will be stored. You can remove the "." from 
".apt_generated" and it will become visible in Eclipse. 
 

https://github.com/hridesh/panini/releases


4 - Add at-paninij annotation processor 
Navigate to the Factory Path section of the project properties. It is beneath the Annotation 
Processing option. Check the Enable project specific settings checkbox, and click the “Add 
External JARs…” button. 

 
Browse to where you have downloaded the JAR file from step 2. Hit Apply and confirm the 
project rebuild. 

 
 



5 - Add the at-paninij as a referenced library 
The @PaniniJ JAR file includes code necessary for the annotation processing and runtime. To 
include the JAR file as a referenced libaray, right click the project in the project explorer, and 
choose "Add External Archives…". 

 
 
Browse to where you downloaded the JAR file from step 2, and include it in your project. Once 
it  
is included, the project should appear like this in the Eclipse project explorer: 

 
 



Appendix II: Alternative Designs 

Alternative: Eclipse Plugin 
As mentioned in our introduction, the original client specification for this project was to 
develop an Eclipse plugin for the PaniniJ language. This plugin would enable syntax checking, 
code completion, and other standard IDE features. We explored this route and researched 
implementations using the XText framework which is used to define language grammar for 
Java-like languages and provide the bridge to Eclipse’s Java features. 
 
We met with another member of the client’s lab who had been working on a similar project for 
the Boa language which gave us practical insight on the nature of this version of the project. It 
was not long before we realized that this plugin would need to be constantly maintained when 
the version of Eclipse, XText, or Java was updated. These maintenance challenges influenced 
our client and our team and ultimately led to this version of the project being altered. 

Alternative: ​panc​ ​Interoptibility 
We also had a version of the project that had strict interoptibility for the existing PaniniJ 
compiler. This required our outputs to match up exactly with those of the PaniniJ system. We 
ended up abandoning this requirement as we could not reproduce certain behaviors of the 
PaniniJ compiler within the framework of our annotation processor. 
 
One example of a behavior we could not replicate is the mangling of user’s source code. We 
did not have a view of the user’s code that would give us line by line parsing but instead were 
limited to a view based on elements that would be directly and immutable linked to classes, 
methods, parameters, and state variables. In short, we could not alter the contents of a user’s 
code in arbitrary ways like the PaniniJ system could. 
 
This ended up being positive as the restriction enabled the use of standard Java debugging 
tools which provided functionality that was better than our initial specification. It also marked 
the time when we accepted that @PaniniJ would be a full replacement of the PaniniJ 
compiler. 

 

  



Appendix III: Other Considerations 

Package Structure 
The naming conventions for the project are adopted from the system architecture; there is a 
direct mapping between package names and the names of systems, components, and 
subcomponents. With the exception of auto-generated classes, all @PaniniJ code is a 
subpackage of the ​org.paninij​ package. 

Naming Conventions 
Many of the class names in the project are delimited by a dollar sign (​$​). These describe 
classes that are auto-generated or do the generating of said classes. Auto-generated classes 
need this in order to prevent collisions with the user’s code (since the auto-generated classes 
are kept in the same package as the user’s code). Additionally, many of the variables and 
method names on the generated classes start with ​panini$​, this is again to prevent 
collisions with code written by the user. 

Coding Guidelines and Conventions 
The @PaniniJ codebase uses a slight modification of the standard Java code conventions. 
Any modifications, such as placement of return carriages before entering the body of a 
method, have been retained as artifacts of the original PaniniJ code conventions. 

Lessons Learned 
As a group, we were extremely satisfied with our final product. We do not think that the level 
of polish and detail that we have accomplished would be possible if it weren’t for the 
consistency with which we met as a group (also with the client). We knew what each person 
was responsible for, held each other accountable and also did a lot of pair programming. To 
summarize, we believe that communication and consistency was key to accomplishing our 
goals. 

  



Appendix IV: FAQ 
 
Why didn’t we just make better tooling for PaniniJ? Why didn’t we just make an Eclipse 
Plugin? 
The stated goal of the project is to make tools which make Panini capsule systems more 
accessible to programmers. This could have been achieved by making better tooling for 
PaniniJ. 
 
However, we also believe that it may be worthwhile developing an annotation processor 
solution for a number of reasons. In particular, an annotation processor is likely much easier 
to develop and maintaining than the existing implementation of ​panc​, a fork of the entire Sun 
javac​ compiler. 
 
Furthermore, though ​panc​, is an extension of the standard Java compiler, PaniniJ code is not 
easily integrated into existing Java projects. Our project, may make Capsule-Oriented 
Programming more usable in Java project than the existing PaniniJ tools can provide. 
 
Note that there may be certain features that PaniniJ/​panc​ provides, which our solution 
cannot provide, for example, certain code analyses and safety checks. However, these 
features are currently outside the scope of this project. 
 
Why did we make the capsule declarations native Java classes?  
This decision allows the user to use many existing Java tools when developing a Panini 
capsule system. Additionally, Java programmers can start making capsule systems without 
learning a new programming language, PaniniJ. 
 
Why perform Java source generation?  
The boilerplate code for making capsule-like entities is tedious and error prone, despite being 
highly a relatively regular translation process. We want to remove the boilerplate by providing 
a standard model which can be verified and tested. By using Java source generation, we can 
generate a layer of code that includes the boilerplate based on source code provided by the 
user. 
 
Why use an Annotation Processor for source artifact generation?  
Using an Annotation Processor gives us a detailed look at the user’s source code through the 
Java standard library, javax.api.model. This library provides the tools to analyze Java source 
code which pairs with the Annotation Processor’s ability to hook into specific sections of the 
source code. Together they provide a system of source analysis that does not require us to 
write a Java interpreter which would be of lesser quality compared to the Java standard API 
libraries. 
 



  



Appendix V: Glossary 
 

Artifact, also 
Source Artifact, 
Generated 
Artifact 

A Java source code artifact created by @PaniniJ. Important kinds of 
artifacts generated include capsule classes and duck classes. 

Artifact Generation The process by which @PaniniJ processes a set of user-defined 
template classes and automatically generates/creates derived 
artifacts. 

Capsule An actor-like software construct defined by the Panini model which 
● uniquely owns its state variables, 
● provides a set of procedures which can be invoked, and 
● has an execution profile by which computations of invoked 

procedures are performed. 

Capsule, Local A capsule declared within the definition of another capsule. Note that 
each design argument of some capsule C is not considered a local 
capsule of C (though they may be a local capsule of some other 
capsule). Aside from the root capsule, all capsules within a system 
are local in exactly one other capsule (its parent capsule). 

Capsule, Imported A capsule declared within the definition of another capsule which is 
imported (a.k.a. wired-in) from the capsule’s parent. 

Capsule, Passive A capsule without a user-defined ​run()​ declaration. 

Capsule, Active A capsule with a user-defined ​run()​ declaration. 

Capsule, Root A capsule which has no dependencies and can serve as the entry 
point for a capsule system. Usually designated with the ​@Root 
annotation. 

Declaration, 
     ​design() 

Where the user defines the set of design arguments and specifies 
what are to be wired to it’s child capsules. 

Declaration, 
init() 

Where the user defines initialization code for a capsule’s state 
variables. 

Declaration, ​run() Where the user defines custom run behavior for a capsule. If a 
capsule has a run declaration, it is called an active capsule. 
Otherwise, it is called a passive capsule. 



Declaration, 
Signature 

Analogous to a Java interface, except it applies to capsules. 

Capsule Imports The set of capsules and objects which must be passed to a capsule 
via its ​imports()​ method in order for that to be instantiated 
properly. 

Execution Profile The mechanism or policy by which a capsule’s procedure invocations 
are processed. For example, in the case of the thread execution 
profile, procedure invocations are submitted to a queue and 
processed one-by-one by that capsule’s own dedicated thread. 

Future A thread-safe object/class which represents a result of a task. We 
say that a future is resolved when the task is complete and the result 
is ready to be used. If a thread tries to use this result before it has 
been resolved, then the thread will block until it is resolved. 

Duck Future (a.k.a. 
Transparent 
Future) 

An object/class which is a mockup of one of the user’s 
objects/classes but also acts as a future, resolvable by the panini 
runtime. This is the key to enabling implicit concurrency. 

Method A regular Java method. (This is distinct from the Panini concept of a 
procedure.) 

Method Call A regular call to a Java method. (This is distinct from the Panini 
concept of procedure invocation.) 

Panini The abstract programming model which defines the semantics of a 
system of interacting capsules.  

PaniniJ A research language similar to Java which adds support for the 
capsule-oriented programming as defined in the ​Panini ​programming 
model. See:  ​http://www.paninij.org 

@PaniniJ The system described in this design document. 

Procedure A panini analog of a method. A procedure is the user-defined code on 
a capsule’s interface which can be invoked (i.e. called), potentially by 
other capsules or other threads. Arguments can be passed and an 
object can be returned. Importantly, the returned object can be a 
duck future. 

Procedure 
Invocation 

A panini analog of a method call. (See ​Procedure​.) 

Shape A description of a method’s return and argument types. This is 
essentially the information in a method signature aside from its 
names. By extension, we also say that procedures have shape. 

http://www.paninij.org/


Signature A Panini analog of a Java interface. Each signature specifies a set of 
procedures. In order for a capsule to implement a signature, it must 
have a definition matching the shape and name of each procedure in 
that signature. 

State Variable, 
  also state 

A Panini analog of an instance variable on a Java object. A state 
variable is a variable attached to a capsule instance. They can only 
be accessed and modified by the init() declaration and procedures of 
the capsule which owns them. 

System Topology The structure of a network of capsules. 

Template Class A Java class annotated with either @Capsule or @Signature which 
specifies the elements of a capsule or signature, respectively. For 
example, some elements which a capsule template class is used to 
define are the procedure definitions, the define() declaration, and 
child capsule declarations. It is from processing a set of template 
classes that @PaniniJ generates a set of source artifacts. 

Wiring The process of initializing a system of capsules with references to 
one another according to the user-defined system topology. 

 


