
Dec15-12: The Final Report
@PaniniJ: Capsule Oriented Programming from Within Java

Trey Erenberger, David Johnston, and Dalton Mills
Advised by Dr. Hridesh Rajan

Table of Contents

Section 1: Project Overview
Section 2: Revised Project Design

org.paninij.lang
org.paninij.runtime
org.paninij.proc

Overview of Annotation Processing Pipeline
Overview of Pipeline Within Annotation Processor
Sub-Component: Checks
Sub-Component: Models
Sub-Component: Capsule Artifact Generator
Sub-Component: Message Artifact Generator

Section 3: Implementation Process Details
Section 4: Testing Process and Testing Results
Appendix I: Operation Manual

Operation Manual Overview:
1 - Setup the project to use JRE 1.7 or greater
2 - Download the at-paninij jar
3 - Enable annotation processing
4 - Add at-paninij annotation processor
5 - Add the at-paninij as a referenced library

Appendix II: Alternative Designs
Alternative: Eclipse Plugin
Alternative: panc Interoptibility

Appendix III: Other Considerations
Package Structure
Naming Conventions
Coding Guidelines and Conventions
Lessons Learned

Appendix IV: FAQ
Appendix V: Glossary

Section 1: Project Overview
The @PaniniJ project is intended to provide tooling to enable the Panini programming model
from within the Java ecosystem. We were initially given the source to the existing
implementation of Panini in Java, PaniniJ, with the goal of developing Eclipse tools for the
PaniniJ language.

PaniniJ was a fork of the entire standard Java compiler that had been modified by members
of the Software Design Laboratory to allow new keywords and syntax specific to capsule
programming. ​The PaniniJ language is similar to Java in many ways, however, important
differences between Java and PaniniJ make many tools designed to be used with Java
unusable with PaniniJ code.

We began our project by investigating possible ways to develop these Eclipse tools for
PaniniJ. However, in discussion with our client, we soon realized that this route would not
likely lead to a maintainable product, and we therefore chose to explore other designs.

Figure 1:​ The PaniniJ compiler worked, but other tools didn’t know the PaniniJ language. This is
an image of valid PaniniJ code displayed from within the Eclipse IDE.

During this exploration we considered numerous strategies to accomplish our overall goal to
“provide tooling for PaniniJ” and we ultimately discovered that PaniniJ itself needed to be
adjusted. Our client approached us with the idea of using annotation processing in order to
write a Java compiler plugin. This would allow us to hook into the Java compiler and generate

code that would support the Panini model. Essentially, PaniniJ was already generating
additional Java source code, but it did so using a fork of the entire Oracle Java compiler.
Clearly, this would be hard to maintain, since should be updated with ongoing changes to the
Java compiler.

We moved forward with developing an annotation processor, and we reimplemented the
functionality of the existing PaniniJ compiler. We adapted the syntax of the PaniniJ language
by converting the PaniniJ keywords into annotations. These annotations allowed for the code
written by the user to be 100% valid Java. This method can be used with any
standards-compliant Java compiler. This should allow our project to be much easier to
maintain as future versions of Java are released.

Figure 2:​ PaniniJ features were ported to annotations which allowed Java IDE’s to handle and
perform Java syntax and type checking.

Our version, @PaniniJ, should now be completely compatible with any standards-compliant
Java tooling (i.e. compilers, build tools, and IDEs). We have tested our compiler plugin with
Eclipse, Netbeans, Oracle’s ​javac​, and Maven. We are also able to provide real-time error
checking to make sure that the user’s code follows the somewhat exacting requirements of

the Panini model. These error messages are integrated right along-side plain-old Java
language syntax errors, so the way in which or system gives feedback to the user should be
completely natural for Java developers. We were able to accomplish this in an IDE/tool
agnostic way that ensures that @PaniniJ has can be used with a huge range of standard Java
development tools, while keeping @PaniniJ easily maintainable by a small team.

Figure 3:​ Using standard Java compiler methods, @PaniniJ is able to produce detailed custom
errors and display them just like Java errors. This image is of @PaniniJ code in Eclipse and
Netbeans that violates a tenet of the Panini model.

Section 2: Revised Project Design
The core of @PaniniJ is organized into three packages, each of which contain its own set of
responsibilities:

1. lang​: contains the annotations which ​proc​ consumes.
2. runtime​: components which are necessary at runtime (e.g. thread pool managers).
3. proc​: the annotation processor itself.

The first two, which are required for both compiling and running a capsule system, are
included in the ​at-paninij-runtime​ JAR file. All three packages are included in the
at-paninij-proc​ JAR file.

org.paninij.lang
This is where user-facing @PaniniJ class definitions are kept. These classes fall into two
categories. The first category are the annotations which the user applies to their code (e.g.
@Capsule​ and ​@Signature​).

The second category arises from a technical challenge and requires a little more explanation.
Many common Java classes in ​java.lang​ are marked final (e.g. String, Integer, etc.). Our
system (like PaniniJ before it) cannot make a duck which mocks a class marked final.
Therefore, procedures which return one of these types will need to return the actual type, not
a transparent future. Consequently, we cannot provide the user with explicit concurrency
when they use these these common Java classes cannot user with implicit concurrency.

As a workaround for this problem, we have placed reimplementations of these common types
within ​org.paninij.lang​ types. Our package mirrors ​java.lang,​ but these
reimplementations are not marked final and can thus be mocked as ducks and have implicit
concurrency.

org.paninij.runtime
The ​org.paninij.runtime​ ​package is another major modules in our system is
segmented into. This package includes the capsule interface, abstract capsule profile
classes, and the interfaces and abstract classes for Duck Futures. The ​Capsule ​interface
included in this package contains the methods that all threading profiles implement. These
methods, which have analogs in the Thread class, include: ​start​, ​shutdown​, ​push​, ​join​,
and ​exit​. This interface is implemented by the abstract classes that are made for each
threading profile: ​Monitor​, ​Serial​, ​Task​, and ​Thread​. These abstract classes contain the
implementation details that all capsules of that profile share.

As mentioned, this package also includes the interfaces and abstract classes for Duck
Futures that are utilized by the capsules to consume Ducks. There exists two types of
procedure calls in the PaniniJ system: procedures with a return value and procedures with no
return value. The procedures that have no return value are the baseline for our Duck Futures.
Ducks based off these procedures implement the ​Panini$Message​ interface which is used
to tie a Duck and the procedure it is based on together. The abstract class ​SimpleMessage
is included to be used for the ​shutdown ​and ​exit ​calls on capsules. The capsule’s run
method relies on the ​Panini$Message​ interface to resolve the Duck Futures in its queue.

The second type of procedures, those that return values, utilize the remaining classes in the
runtime package: ​Future ​and ​ResolvableFuture​.

org.paninij.proc

Overview of Annotation Processing Pipeline

Java provides the ability write custom annotations and custom annotation processor. Java
developers are already familiar with annotations such as ​@Override​ and ​@Suppress​.

In order to approximate the expressiveness of the PaniniJ language, replaced PaniniJ-specific
keywords with a create a handful of new Java annotations. For example, the ​capsule
keyword in PaniniJ became the ​@Capsule​ annotation in equivalent @PaniniJ programs.

User-defined classes annotated with @Capsule are called ​capsule templates​. The name
follows from the fact that they serve as a template in the automatic generation of additional
artifacts. If our compiler plugin is present on the classpath when when a Java compiler is
tasked to compile one of these capsule template classes, the Java compiler will trigger our
custom annotation processor, ​org.paninij.proc.PaniniProcessor​.

Figure 4:​ A high-level view of the process that converts user template code into capsule
systems.

While executing, our annotation processor uses the annotation processing API to inspect the
interfaces of the classes which the user has supplied. Note that this API is limited to only
inspecting input classes, not modifying them. Therefore, like many other annotation
processors, ​proc​ does its work by creating new source artifacts. These new artifacts
essentially wrap the user-defined code with concurrent code according to the Panini
programming model. (The technical details of the generated files are quite similar to files
which would have been created by ​panc​, however there are some important technical
differences which arose from limitations of the compiler plugin API and restrictions induced
by the Java type system.)

These generated artifacts essentially wrap the user’s code to form an executable system of
concurrent capsules. This lets us hide complicated and error-prone interactions between
capsules hidden from the user.

Our processor emits these newly generated Java files, and they are passed along with the rest
of the user’s source code to be compiled. The user’s classes and the @PaniniJ-generated
classes are used together to form an executable capsule system.

Overview of Pipeline Within Annotation Processor
As discussed above, the job of the annotation processor is to take the user’s capsule
templates as input and to generate new concurrent wrapping classes as output. These
outputs are generated in adherence to the Panini programming model and thus eliminate the
possibility of certain concurrency bugs by construction.

Within this process of inspecting inputs and generating outputs are a number of stages. The
following image shows the processing pipeline within our annotation processor.

Figure 5:​ @PaniniJ processor pipeline within the processor itself. The user’s source code is
taken as input and various Panini-specific artifacts are generated as output.

The annotation processor system (a.k.a. ​@PaniniJ​) drives all compile-time behavior. It is
responsible for delegating to any necessary input validation components (e.g.
CapsuleChecker​) and any necessary artifact generation components (e.g. ​MakeDuck​). It is
the master control which delegates to other components.

The following subsections describe each of the components which are a part of the
annotation processor system.

Sub-Component: Checks
@PaniniJ will generate errors when a user violates a some property of the Panini
programming model or the @PaniniJ syntax. In all, we implemented about 45 distinct checks.

These errors are reported just as Java programmers expect: in IDE’s like Eclipse and
Netbeans, these errors are reported via red squiggly lines and context boxes at the point of
failure; when running the compiler on the command line, error messages are printed along
with line numbers.

Sub-Component: Models
Since the Panini programming model has several differences from the Java programming
model, we decided it would be the most flexible to translate components of the Java model
(classes, methods, interfaces, etc) into components of the Panini model (capsules,
procedures, signatures, etc). With this abstract-syntax-tree like structure of Panini
components, we are able to put the artifact generators in terms of the Panini programming
model. Additionally, this structure could be created programmatically.

Sub-Component: Capsule Artifact Generator
User classes which are annotated with ​@Capsule​ are called Capsule Templates. Capsule
Templates define a capsule to be generated. The Capsule Artifact Generator SubComponent
creates Capsules based on the user-created template. The Capsule Artifact Generator will
create four different runtime profiles (Thread, Monitor, Serial, and Task) for each capsule.
These generated artifacts are named accordingly:

● CapsuleName​$Thread.java
● CapsuleName​$Monitor.java
● CapsuleName​$Serial.java
● CapsuleName​$Task.java

The Capsule Artifact Generator also tells the Duck Future Artifact Generator SubComponent
which ducks will need to be generated.

Sub-Component: Message Artifact Generator
@PaniniJ uses several distinct methods to allow capsules to invoke procedures on each
other. It is necessary to have these different methods because the primary method, duck
futures, are unable to support procedures due to properties of their return type. We also use
explicit futures via the ​Future​ interface in ​java.util.concurrent​ package of the
standard Java API. Finally we allow a procedure to have blocking behavior where the calling
capsule halts execution until the result is returned. A user specifies the behavior of a
procedure by using the provided annotations: ​@Duck​, ​@Future​, and ​@Block​.

Each of these methods extends the abstract class ​MessageFactory​ to produce the version
of the message artifact requested by the user’s template.

The ​DuckMessageFactory​ handles the production of the implicit duck futures.These duck
futures are an essential part of making synchronous method calls act as asynchronous
procedures invocations by acting as invisible futures which encapsulate the results of the
procedure while still allowing the capsule continue executing.

The core functionality of duck futures remain the same in this system as it is in ​panc​.
@PaniniJ’s duck system differs in an attempt to reduce the number of duck classes
generated by allowing “duck shapes” to be shared by different capsules. In the ​panc
implementation, ducks were generated by capsule name and procedure return type. Our
implementation instead creates ducks based on the return type and parameter types.

Additionally, any object (i.e. non-primitive) arguments (e.g. String or BufferedReader) are cast
to an ​Object​ when they are stored in a duck future. This abstraction again reduces the
number of ducks which need to be generated. When the duck is consumed by a capsule’s

run()​ method, the abstracted parameters are cast back to their original types and passed
into the correct method of the stored instance of the template class.

An example of the ducks generated by both systems follows:

Figure 6:​ Duck Artifacts: Duck Generation using PaniniJ’s ​panc​ vs. ​@PaniniJ.

In addition to ducks, we also allow for explicit futures to be used within a capsule system with
the ​@Future​ annotation. Explicit futures are the standard method of calling java methods
asynchronously in traditional concurrent java programming. Explicit futures do not have the
restrictions that duck futures have with return types and yield better performance than
blocking behavior. The downside to this method is that the user must handle the unpacking of
the future instead of the panini system doing it for them.

Finally, @PaniniJ allows developers to specify blocking behavior for procedures with the
@Block annotation. This behavior has no restrictions on return type, but has a performance
downside as the calling capsule must wait for the result before it can continue executing. A
potential application of the blocking behavior is when a user wants to intentionally
synchronize the order of procedure calls.

The Java source files generated by these different capsule and message factories produce
artifacts which are then combined and ran through the standard java compiler. The resulting
class files represent the concurrency safe capsule system that the user described in their
annotated templates.

Figure 7:​ Example flow between user written code, generated code, and an executable capsule
system.

Section 3: Implementation Process Details
We used the Rapid Application Development method. This involved creating many prototypes 1

that tackle small problems instead of doing a lot of up-front planning. The lack of up-front
planning was suitable for this project since it is a small portion of a larger ongoing research
project. We expected that the requirements of the project would change frequently and
without warning.

Additionally, the technologies we will be used were completely new to us (e.g. annotation
processing and potentially, pluggable type checkers); as such, too much up-front planning
might provide too optimistic a view of the strength and appropriateness of these tools within
the design. With rapid development of prototypes we became familiar with the capabilities of
the new technologies without committing to a single plan and then gauged their
appropriateness as we went.

Throughout the development of this project several design refactorings occurred in order to
bring the smaller features and prototypes together in a way which best met the project’s
goals, constraints, and requirements, as well as the needs of the project’s stakeholders.

Since features and prototypes developed with the Rapid Application Development method are
somewhat independent, it was necessary that multiple people viewed code before it became
a part of the current design. To accomplish this, we are used pair programming as often as
possible and also used tools such as git and github to manage pull requests and perform 2 3

code reviews.

1 ​http://en.wikipedia.org/wiki/Software_development_process#Rapid_application_development
2 ​http://git-scm.com/
3 ​https://github.com/

http://en.wikipedia.org/wiki/Software_development_process#Rapid_application_development
http://git-scm.com/
https://github.com/

Section 4: Testing Process and Testing Results
Developing tests for our annotation processor was very important, since our project will be
continued on by the ISU Laboratory for Software Design after we are finished.

While developing the artifact generation code, we were able to perform a good deal of simple
testing by simply writing input @PaniniJ programs and running our generated outputs through
the Java compiler. We could then run these capsule artifacts to see whether they behaved as
expected. However, automatic execution of these test capsule systems has not yet been
added to the project.

This strategy works for capule systems which follow all of the @PaniniJ syntax rules, but we
also needed to check that all of our capsule checks worked. For this we needed to check that
malformed inputs reported appropriate errors.

To test each of these checks, we used JUnit tests to start the annotation processor with
some malformed input. The JUnit tests only pass when a panini check fails.

Finishing the 0.1.0 release of the @PaniniJ processor was our final goal for development on
this project. It was imperative that the static checks of user code functioned properly as it is a
primary tool for new developers to learn a new system. It was also requisite that our code
generation produced valid, concurrently safe Java source code. We made a point of writing a
unit test for each of the static checks that would clearly show whether they are working as
anticipated which has allowed us to validate that that portion of the user experience is
functioning.

We have also been maintaining a suite of example @PaniniJ projects that are run through our
processor and then through the Java compiler. The pass through the Java compiler ensures
that our generated code passes static type checking and will alert us to any problems with
malformed generated source code. As of the release of 0.1.0, both prongs of our testing
method were fully functioning and producing positive results.

Appendix I: Operation Manual

Operation Manual Overview:
These are the overall steps to setting up an @PaniniJ project in Eclipse:

1. Create an Eclipse Project
2. Download the @PaniniJ jar
3. Enable annotation processing
4. Add at-paninij annotation processor to your build
5. Add the at-paninij jar as a referenced library

1 - Setup the project to use JRE 1.7 or greater
When you create a new project, be sure to choose Java Runtime Environment 1.7 or greater,
this is necessary for the annotation processing to work correctly.

2 - Download the at-paninij jar
Download the latest processor (​at-paninij-proc-v0.1.0.jar​) from the github releases
page: ​https://github.com/hridesh/panini/releases​.

3 - Enable annotation processing
Enable annotation processing by right clicking on your project in the project explorer and
choosing "properties." Browse to Java Compiler > Annotation Processing and check the
“Enable project specific settings” checkbox and “Enable annotation processing”.

Once you hit Apply, Eclipse will inform you that a rebuild on the project is required. You can
click yes to rebuild the project now.

Note that the "Generated Source Directory" is where the sources that the annotation
processor automatically generates will be stored. You can remove the "." from
".apt_generated" and it will become visible in Eclipse.

https://github.com/hridesh/panini/releases

4 - Add at-paninij annotation processor
Navigate to the Factory Path section of the project properties. It is beneath the Annotation
Processing option. Check the Enable project specific settings checkbox, and click the “Add
External JARs…” button.

Browse to where you have downloaded the JAR file from step 2. Hit Apply and confirm the
project rebuild.

5 - Add the at-paninij as a referenced library
The @PaniniJ JAR file includes code necessary for the annotation processing and runtime. To
include the JAR file as a referenced libaray, right click the project in the project explorer, and
choose "Add External Archives…".

Browse to where you downloaded the JAR file from step 2, and include it in your project. Once
it
is included, the project should appear like this in the Eclipse project explorer:

Appendix II: Alternative Designs

Alternative: Eclipse Plugin
As mentioned in our introduction, the original client specification for this project was to
develop an Eclipse plugin for the PaniniJ language. This plugin would enable syntax checking,
code completion, and other standard IDE features. We explored this route and researched
implementations using the XText framework which is used to define language grammar for
Java-like languages and provide the bridge to Eclipse’s Java features.

We met with another member of the client’s lab who had been working on a similar project for
the Boa language which gave us practical insight on the nature of this version of the project. It
was not long before we realized that this plugin would need to be constantly maintained when
the version of Eclipse, XText, or Java was updated. These maintenance challenges influenced
our client and our team and ultimately led to this version of the project being altered.

Alternative: ​panc​ ​Interoptibility
We also had a version of the project that had strict interoptibility for the existing PaniniJ
compiler. This required our outputs to match up exactly with those of the PaniniJ system. We
ended up abandoning this requirement as we could not reproduce certain behaviors of the
PaniniJ compiler within the framework of our annotation processor.

One example of a behavior we could not replicate is the mangling of user’s source code. We
did not have a view of the user’s code that would give us line by line parsing but instead were
limited to a view based on elements that would be directly and immutable linked to classes,
methods, parameters, and state variables. In short, we could not alter the contents of a user’s
code in arbitrary ways like the PaniniJ system could.

This ended up being positive as the restriction enabled the use of standard Java debugging
tools which provided functionality that was better than our initial specification. It also marked
the time when we accepted that @PaniniJ would be a full replacement of the PaniniJ
compiler.

Appendix III: Other Considerations

Package Structure
The naming conventions for the project are adopted from the system architecture; there is a
direct mapping between package names and the names of systems, components, and
subcomponents. With the exception of auto-generated classes, all @PaniniJ code is a
subpackage of the ​org.paninij​ package.

Naming Conventions
Many of the class names in the project are delimited by a dollar sign (​$​). These describe
classes that are auto-generated or do the generating of said classes. Auto-generated classes
need this in order to prevent collisions with the user’s code (since the auto-generated classes
are kept in the same package as the user’s code). Additionally, many of the variables and
method names on the generated classes start with ​panini$​, this is again to prevent
collisions with code written by the user.

Coding Guidelines and Conventions
The @PaniniJ codebase uses a slight modification of the standard Java code conventions.
Any modifications, such as placement of return carriages before entering the body of a
method, have been retained as artifacts of the original PaniniJ code conventions.

Lessons Learned
As a group, we were extremely satisfied with our final product. We do not think that the level
of polish and detail that we have accomplished would be possible if it weren’t for the
consistency with which we met as a group (also with the client). We knew what each person
was responsible for, held each other accountable and also did a lot of pair programming. To
summarize, we believe that communication and consistency was key to accomplishing our
goals.

Appendix IV: FAQ

Why didn’t we just make better tooling for PaniniJ? Why didn’t we just make an Eclipse
Plugin?
The stated goal of the project is to make tools which make Panini capsule systems more
accessible to programmers. This could have been achieved by making better tooling for
PaniniJ.

However, we also believe that it may be worthwhile developing an annotation processor
solution for a number of reasons. In particular, an annotation processor is likely much easier
to develop and maintaining than the existing implementation of ​panc​, a fork of the entire Sun
javac​ compiler.

Furthermore, though ​panc​, is an extension of the standard Java compiler, PaniniJ code is not
easily integrated into existing Java projects. Our project, may make Capsule-Oriented
Programming more usable in Java project than the existing PaniniJ tools can provide.

Note that there may be certain features that PaniniJ/​panc​ provides, which our solution
cannot provide, for example, certain code analyses and safety checks. However, these
features are currently outside the scope of this project.

Why did we make the capsule declarations native Java classes?
This decision allows the user to use many existing Java tools when developing a Panini
capsule system. Additionally, Java programmers can start making capsule systems without
learning a new programming language, PaniniJ.

Why perform Java source generation?
The boilerplate code for making capsule-like entities is tedious and error prone, despite being
highly a relatively regular translation process. We want to remove the boilerplate by providing
a standard model which can be verified and tested. By using Java source generation, we can
generate a layer of code that includes the boilerplate based on source code provided by the
user.

Why use an Annotation Processor for source artifact generation?
Using an Annotation Processor gives us a detailed look at the user’s source code through the
Java standard library, javax.api.model. This library provides the tools to analyze Java source
code which pairs with the Annotation Processor’s ability to hook into specific sections of the
source code. Together they provide a system of source analysis that does not require us to
write a Java interpreter which would be of lesser quality compared to the Java standard API
libraries.

Appendix V: Glossary

Artifact, also
Source Artifact,
Generated
Artifact

A Java source code artifact created by @PaniniJ. Important kinds of
artifacts generated include capsule classes and duck classes.

Artifact Generation The process by which @PaniniJ processes a set of user-defined
template classes and automatically generates/creates derived
artifacts.

Capsule An actor-like software construct defined by the Panini model which
● uniquely owns its state variables,
● provides a set of procedures which can be invoked, and
● has an execution profile by which computations of invoked

procedures are performed.

Capsule, Local A capsule declared within the definition of another capsule. Note that
each design argument of some capsule C is not considered a local
capsule of C (though they may be a local capsule of some other
capsule). Aside from the root capsule, all capsules within a system
are local in exactly one other capsule (its parent capsule).

Capsule, Imported A capsule declared within the definition of another capsule which is
imported (a.k.a. wired-in) from the capsule’s parent.

Capsule, Passive A capsule without a user-defined ​run()​ declaration.

Capsule, Active A capsule with a user-defined ​run()​ declaration.

Capsule, Root A capsule which has no dependencies and can serve as the entry
point for a capsule system. Usually designated with the ​@Root
annotation.

Declaration,
 ​design()

Where the user defines the set of design arguments and specifies
what are to be wired to it’s child capsules.

Declaration,
init()

Where the user defines initialization code for a capsule’s state
variables.

Declaration, ​run() Where the user defines custom run behavior for a capsule. If a
capsule has a run declaration, it is called an active capsule.
Otherwise, it is called a passive capsule.

Declaration,
Signature

Analogous to a Java interface, except it applies to capsules.

Capsule Imports The set of capsules and objects which must be passed to a capsule
via its ​imports()​ method in order for that to be instantiated
properly.

Execution Profile The mechanism or policy by which a capsule’s procedure invocations
are processed. For example, in the case of the thread execution
profile, procedure invocations are submitted to a queue and
processed one-by-one by that capsule’s own dedicated thread.

Future A thread-safe object/class which represents a result of a task. We
say that a future is resolved when the task is complete and the result
is ready to be used. If a thread tries to use this result before it has
been resolved, then the thread will block until it is resolved.

Duck Future (a.k.a.
Transparent
Future)

An object/class which is a mockup of one of the user’s
objects/classes but also acts as a future, resolvable by the panini
runtime. This is the key to enabling implicit concurrency.

Method A regular Java method. (This is distinct from the Panini concept of a
procedure.)

Method Call A regular call to a Java method. (This is distinct from the Panini
concept of procedure invocation.)

Panini The abstract programming model which defines the semantics of a
system of interacting capsules.

PaniniJ A research language similar to Java which adds support for the
capsule-oriented programming as defined in the ​Panini ​programming
model. See: ​http://www.paninij.org

@PaniniJ The system described in this design document.

Procedure A panini analog of a method. A procedure is the user-defined code on
a capsule’s interface which can be invoked (i.e. called), potentially by
other capsules or other threads. Arguments can be passed and an
object can be returned. Importantly, the returned object can be a
duck future.

Procedure
Invocation

A panini analog of a method call. (See ​Procedure​.)

Shape A description of a method’s return and argument types. This is
essentially the information in a method signature aside from its
names. By extension, we also say that procedures have shape.

http://www.paninij.org/

Signature A Panini analog of a Java interface. Each signature specifies a set of
procedures. In order for a capsule to implement a signature, it must
have a definition matching the shape and name of each procedure in
that signature.

State Variable,
 also state

A Panini analog of an instance variable on a Java object. A state
variable is a variable attached to a capsule instance. They can only
be accessed and modified by the init() declaration and procedures of
the capsule which owns them.

System Topology The structure of a network of capsules.

Template Class A Java class annotated with either @Capsule or @Signature which
specifies the elements of a capsule or signature, respectively. For
example, some elements which a capsule template class is used to
define are the procedure definitions, the define() declaration, and
child capsule declarations. It is from processing a set of template
classes that @PaniniJ generates a set of source artifacts.

Wiring The process of initializing a system of capsules with references to
one another according to the user-defined system topology.

