Project Plan (1st Draft)

Team Dec 15-12: @PaniniJ
February 19th, 2015

Advisor
Client

Team Members

Dr. Rajan
Dr. Rajan

Dalton Mills

David Johnston
Kristin Clemens
Trey Erenberger

Webmaster

Team Lead
Communication Lead
Key Concept Holder

Table of Contents

Project Statement
Prior Work: Background on Capsule-Oriented Programming
Usage: Capsule Generation via Annotation Processor
Requirements
Functional Requirements
Nonfunctional Requirements
Possible Solutions
Risk & Feasibility Assessment
Performance
Workflow Integration
Attainment of Project Goals
Semantic Analysis
Schedule
Cost
Market Survey/Literature Review
Conclusion

Glossary

Project Statement

Modern multi-core CPUs provide powerful support for concurrent programs, but it is very hard
to build correct programs and systems which take full advantage of this hardware. Paninid is a
Java-like programming language with strong support for the capsule programming
abstraction. The language has been designed such that programs written in the language
cannot include certain common concurrency bugs.

Though panc, the existing Paninid compiler, is an extension of the standard Java compiler,
Paninid code is not easily integrated into existing Java projects. Our project, @PaniniJ,
intends to make Capsule-Oriented Programming more accessible to Java programmers than
the existing Paninid tools can provide.

Our project will implement an alternative mechanism for generating capsules, one which can
be used by a Java developer within the Java programming language and built using standard
Java build systems (e.g. Ant, Maven, Eclipse and javac). Our solution will use annotation
processors to easily generate capsule classes which are functionally equivalent to PaniniJ
capsules but usable from within Java.

Prior Work: Background on Capsule-Oriented Programming

TODO: Existing concurrent programming techniques require a developer to ...
TODO: Actor frame of reference?
TODO: Our system will existing theoretical work which has been done on Capsule

Usage: Capsule Generation via Annotation Processor

Annotation processors provide a simple way to hook into a standards-compliant java compiler,
inspect the client’s annotated Java code, and then automatically construct additional Java
source files. These machine-generated source files are then compiled and included for use in
other source code in the project.

Our solution will be distributed as a . jar file, which a client should easily be able to include in
their java project. The user can then write a Java class annotated with @Capsule. This
original @Capsule-annotated class is referred to as a template class because it serves as the
template from which a capsule class is generated. When this class is compiled, javac will
call on our annotation processor. Our annotation processor will inspect the template class,
and generate a capsule class which wraps the template class appropriately.

Requirements

Functional Requirements

Working annotation-based frontend for the generation of PaniniJ-compatible capsules.
Support for four basic execution strategies (i.e. Thread, Task, Monitor, and
Sequential).
Reference-counting garbage collection.
Translate Paninid programs to @Paninid programs for use as

o capsule-generation test cases,

o semantic analysis test cases, and

o benchmarks comparing Paninid and @PaninidJ performance.
Intra-capsule confinement analysis.
Analysis of other yet-unidentified safety/correctness properties.
Automated mapping from code to a compilation strategy

Nonfunctional Requirements

e Project Requirements
e Fits Java programmer’s expectations
e each requirement should have a Validation and Acceptance Test

Possible Solutions

There are several options that we came across that would allow us to make capsule
programming more accessible

e Create an Eclipse plugin for PaniniJ
o Effectively build an IDE on top of Eclipse in order to support the PaniniJ
language.
o Made easier through the use of Xtext, a library for creating Eclipse plugins and
language development easier.
e Take Eclipse JDT’s existing ASTParser to allow it to build an AST for PaniniJ
o This option was very briefly researched for reasons below.
e Leverage new annotation processing and pluggable type checkers in Java 1.8 to plug
directly into the standard java compiler.

We opted for the third option of creating a library which uses Java 1.8’s annotation
processing. The other options were fairly quickly discarded in favor of this approach for the
reasons outlined below:

1. Annotation Processing is now standard in Java 1.8. We would not be creating a
non-standard solution.

2. Creating a standard solution caters to our ultimate goal of having accessible
capsule-oriented programming.

3. It will be easier to integrate into existing projects.

Risk & Feasibility Assessment

Risk reduction was the ultimate deciding factor in why we chose to use annotation processing
for this project. Moving forward, however, we still have many concerns regarding potential and
inherent risks of our proposed solution, as well as questions about the feasibility of achieving
our goal of accessible capsule-oriented programming.

Performance
1. How will multiple stages of code generation and type checking affect compiler
performance?

2. Will code generated by the annotation processor be as performant as panc
generated code?

Workflow Integration
1. Will @Paninid provide sufficiently familiar development workflow for the average
developer programming concurrent solutions?
2. @Paninid template and capsule classes are just Java code, but what will be required
from the user to make common Java IDEs work seamlessly with @PaniniJ?
3. Will IDE debugger integration be possible? If so, will it work consistently across all
IDEs for which @PaniniJ is implemented?

Attainment of Project Goals
1. Will @Paninid lower the barrier to entry for developers new to programming concurrent
solutions?

Semantic Analysis
1. Will @Paninid be able to provide the semantic analysis expected by experienced IDE
users? If not, how much will this negatively impact the user’s ability to program
effectively using @PaniniJ, and thus their desire to use @PaniniJ at all?

Schedule

By the end of the Spring 2015 semester:

e Working annotation-based frontend for the generation of PaniniJ-compatible capsules.

e Support for four basic execution strategies (i.e. Thread, Task, Monitor, and
Sequential).

e Translate a number of existing Paninid benchmark programs into @PaniniJ for use as
tests.

e Reference-counting garbage collection.

By the end of the Fall 2015 semester:

e Translate more existing Paninid benchmark programs into @PaniniJ for use as tests
and benchmarks comparing the performance of Paninid and @PaniniJ systems.

e Implement intra-capsule confinement analysis.

e Implement semantic analysis of additional safety/correctness properties.

e Automated selection of appropriate execution policy based on system topology.

Cost

This project does not have any hardware components and does not require the purchase of
any commercial software. By building on top of research undergone at lowa State University
we receive a vast pool of resources for no cost. We therefore expect our project budget to be
$0 and since we are working for free, the cost of development will be $0.

Market Survey/Literature Review

Our final product will compete with existing Paninid tools created within the Laboratory for
Software Design at lowa State University, in particular, the panc compiler. This existing
solution has several restrictions that negatively affect its usability for the average Java
programmer. Our project seeks to resolve some of these shortcomings.

Paninid currently inhibits the programmer from using standard Java toolchains. A client needs
to use the special panc compiler. However, our solution is easily integrated via the classpath
by hooking into the standard Java compiler produced by Oracle. panc forks and extends the

Java compiler produced by Oracle. Our product decouples the capsule-generation process

6

from a specific version of compiler allowing for portability between toolchains. Our products
are comparable because they utilize the same for capsule oriented programming and produce
outputs compatible with the Paninid runtime.

Conclusion

Our project’s main goal is providing java developers with a simple way to write capsule-based
concurrent programs using the Panini capsule oriented paradigm. This is achieved by
produced a deliverable Jar that easily integrates with standard Java workflow and toolchain.

If our project is successful and we implement enough functionality to allow our product to
compete with the existing implementation, it is likely that our product will replace the existing
panc compiler and the Panini paradigm will use annotated Java over its own language
syntax. This ultimately results in the Laboratory of Software Design migrating to our project
and building upon it to implement further features of Panini for Java. After our work is
completed, the project will be released as an open source project on Sourceforge or Github
and will be maintained and contributed to by the Panini research group.

Glossary

Panini A capsule-oriented programming language whose goals are to ease development
of correct, scalable, and portable concurrent software."

PaniniJ A capsule-oriented extension of the Java programming language that runs on the
standard JVM platform.2

Capsule Similar to a process, it defines a set of public operations and also serves as a

memory region for some set of ordinary objects.?

Capsule-oriented
Programming

A programming paradigm that aims to ease development of concurrent software
systems by allowing abstraction from concurrency-related concerns; entails
breaking down program logic into distinct parts called capsule declarations and
composing these parts to form the complete program using system declaration.*

Java annotations

A form of metadata, provide data about a program that is not part of the program
itself, having no direct effect on the operation of the code they annotate.®

Java type Annotations that are applied to type use, which support improved analysis of Java
annotations programs way of ensuring stronger type checking.®

Pluggable type A custom module used in conjunction with the Java compiler to ensure the state
checker of a variable, with the goal of preventing or detecting all errors of a given variety.
Checker A pluggable type checker tool developed at The University of Washington’ that
Framework comes with predefined type checkers and provides a framework for developers to

build their own custom type checkers.

' http://www.cs.iastate.edu/~panini/about.shtml#what

2 hitp://www.cs.iastate.edu/~panini/about.shtml#what

3 http://www.cs.iastate.edu/~panini/about.shtml#capsule

4 http://www.cs.iastate.edu/~panini/docs/faq.shtml#q_|_whatis

5 http://docs.oracle.com/javase/tutorial/java/annotations/index.html

8 http://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
7 http://types.cs.washington.edu/checker-framework/

8

