

Project Plan
Team Dec 15-12: @PaniniJ

April 25th, 2015

Advisor Dr. Rajan

Client Dr. Rajan

Team Members Dalton Mills
David Johnston
Trey Erenberger

Webmaster
Team Lead
Key Concept Holder

Abstract:​ This project’s main goal is to provide Java developers with a simple way to safely
write concurrent programs using the Panini capsule-oriented programming paradigm. This is
achieved by producing a deliverable ​.jar​ file that will easily integrate with standard Java
workflow and toolchain. The annotation processor in this ​.jar​ will be triggered by any
standard Java compiler to generate capsules and other artifacts needed for their operation.
These capsules will run concurrently in a Panini capsule system.

1

Table of Contents

Table of Contents
Project Statement
Prior Work: Background on Capsule-Oriented Programming
Usage: Capsule Generation via Annotation Processor
Requirements

Functional Requirements
Nonfunctional Requirements

Solutions Considered
Option 1. Eclipse Plugin / Modify Eclipse
Option 2. Modify Eclipse JDT for PaniniJ
Option 3. Annotation Processor

Feasibility Assessment
Performance
Workflow Integration
Attainment of Project Goals
Semantic Analysis

Schedule
Cost
Market Survey/Literature Review
Project’s Future
Glossary

2

Project Statement

Modern multi-core CPUs provide powerful support for concurrent programs, but it is very hard
to build correct programs and systems which take full advantage of this hardware. PaniniJ is
a Java-like programming language with strong support for the capsule programming
abstraction. The language has been designed such that programs written in the language
cannot include certain common concurrency bugs.

Though ​panc​, the existing PaniniJ compiler, is an extension of the standard Java compiler,
PaniniJ code is not easily integrated into existing Java projects. Our project, @PaniniJ,
intends to make Capsule-Oriented Programming more accessible to Java programmers than
the existing PaniniJ tools can provide.

Our project will implement an alternative mechanism for generating capsules, one which can
be used by a Java developer within the Java programming language and built using standard
Java build systems (e.g. Ant, Maven, Eclipse and ​javac​). Our solution will use annotation
processors to easily generate capsule classes which are functionally equivalent to PaniniJ
capsules but usable from within a Java development ecosystem.

Prior Work: Background on Capsule-Oriented
Programming

Concurrent programs are different from sequential programs because they must take into
account manual management of memory accesses by using locks or other synchronization
mechanisms. This management leads to lots of standard boilerplate code that must be
duplicated wherever memory synchronization is needed. This style of programming has a
high barrier of entry. In traditional concurrent programs and programming languages, the
synchronization logic and the application logic are intertwined in a way which complicates
reasoning, readability, and maintainability.

One alternative to lock-based (e.g. Java, C++) concurrent programming is actor oriented
programming. Capsule oriented programming is a programming model refines the actor
oriented programming model by placing certain restrictions on the programming model in
order to provide certain safety properties.

Capsules differ from actors in that they have a finite list of messages that can be passed to
them. These messages must all be defined statically and can be checked and verified
formally at compile time. The syntax for sending a message looks like the syntax for calling a
method call in Java. Capsules systems are statically defined whereas actor systems are

3

dynamically defined. The rigidity provided to capsule systems allows for formal proving of
systems.

Usage: Capsule Generation via Annotation
Processor

Annotation processors provide a simple way to hook into a standards-compliant java
compiler, inspect annotated Java code, and then automatically construct additional Java
source files. These machine-generated Java source files are then compiled and included for
use in other source code in the project.

Our solution will be distributed as a ​.jar​ file which users can easily include in their java
project. The user can then write a Java class annotated with ​@Capsule​ and suffixed with
Template​. This original ​@Capsule​-annotated class is referred to as a ​template class
because it serves as the template from which a capsule class is generated. When this class is
compiled, ​javac​ will automatically call on our annotation processor, which will then inspect
the template class and generate a variety of Java source artifacts.

Arguably, the most important of these generated source artifacts are the capsule classes, of
which there are four types (Thread, Task, Monitor, and Serial). Of these four types, the
Thread-based capsule is the canonical example (and the focus for our implementation in the
first term).

Additional information about the design of capsules and our system which is used to
generate them can be found the the design document.

Requirements

The requirements listed here are expanded on in the Design Document.

Functional Requirements

● Working annotation-based frontend for the generation of PaniniJ-compatible capsules.
● Support for four basic execution strategies (i.e. Thread, Task, Monitor, and Serial).
● Port PaniniJ programs to @PaniniJ programs for use as

○ capsule-generation test cases
○ semantic analysis test cases

4

○ benchmarks comparing PaniniJ and @PaniniJ performance.
● Intra-capsule confinement analysis.
● Analysis of other safety and correctness properties.
● Automated selection of appropriate execution policy based on system topology and

capsule performance.
● Reference-counting garbage collection.
● Works with standards-compliant Java compilers.
● Works with common Java toolchains.

Nonfunctional Requirements

● Capsule template syntax is simple and declarative.
○ Minimizes amount of boilerplate code

● Validation and Acceptance Test for each functional requirement.

Solutions Considered
We investigated three possible solutions that would allow us to make capsule programming
more accessible:

Option 1. Eclipse Plugin / Modify Eclipse

Many language development teams create an integrated development environment program
quickly by extending Eclipse to support custom language syntax and features. The process of
extending eclipse is made easier through the use of XText . XText is a library that facilitates 1

creation of Eclipse plugins and language development simpler.

This option would require more maintenance in order to stay relative. Since we would be
building on top of Eclipse, our forked editor or plugin would be locked with the version of
eclipse we started with, and we would need to perform some merges when Eclipse is
updated.

This option would require end-users to download the custom editor or plugin. This could be a
potential deterrent from software developers using PaniniJ to create multithreaded programs.

Option 2. Modify Eclipse JDT for PaniniJ

1 https://eclipse.org/Xtext/

5

This option was only briefly explored. However, it would be similar to option 1 such that
maintenance would be required in order to keep up with the latest changes in Java.

Option 3. Annotation Processor

Java provides the ability to have custom annotations through creating an annotation
processor(s). Java developers are already familiar with annotations such as ​@override​ and
@suppress​. We would a create a handful of new annotations along the lines of ​@Capsule​.
When compiled, any user code containing our custom annotations would get processed and
we would generate code similar to the Java source artifacts produced by panc.

Solution Chosen

We opted for Option 3 of creating a service built on Java’s annotation processing. The other
options were discarded fairly quickly in favor of this approach for the reasons outlined below:

1. Annotation Processing is now standard in Java. We would not be creating a
non-standard solution.

2. Creating a standard solution caters to our ultimate goal of having accessible
capsule-oriented programming.

3. Having a standard solutions means more maintainability and compatibility with future
versions of Java.

4. It will be easier to integrate into existing projects.
5. Java developers are already familiar with annotations.

Feasibility Assessment

Risk reduction was the ultimate deciding factor in why we chose to use annotation processing
for this project. Moving forward, however, we still have many concerns regarding potential
and inherent risks of our proposed solution, as well as questions about the feasibility of
achieving our goal of accessible capsule-oriented programming. An important part of our
project is answering these questions.

Performance

How will multiple stages of code generation and type checking affect compiler memory and
speed performance?

6

We don’t know. Ultimately using @PaniniJ will lead to slower compile times compared to
standard Java due to the layers of generation and compilation. The optimization of compiler
memory and speed has not be a priority for this project.

Will code generated by the annotation processor be as performant as ​panc​ generated code?

Runtime performance is essential to the success of @PaniniJ as the primary advantage of
concurrent programming is increased speed. Great care has been taken to reduce the number
of method calls in the generated code in order to keep the overhead low enough for @PaniniJ
programs to compete with sequential programs.

Usability Questions

● Will @PaniniJ lower the barrier of entry for developers new to programming concurrent
solutions?

● Will @PaniniJ provide sufficiently familiar development workflow for the average
developer programming concurrent solutions?

● @PaniniJ template and capsule classes are just Java code, but what will be required
from the user to make common Java IDEs work seamlessly with @PaniniJ?

● Will IDE debugger integration be possible? If so, will it work consistently across all IDEs
for which @PaniniJ is implemented?

● Will @PaniniJ be able to provide the semantic analysis expected by experienced IDE
users? If not, how much will this negatively impact the user’s ability to program
effectively using @PaniniJ, and thus their desire to use @PaniniJ at all?

Schedule

By the end of the Spring 2015 semester:

● Generation of Capsule and Signature artifacts from annotated template classes
● Generation of Duck Future artifacts to support generated capsules
● Support for Thread capsule execution strategy.
● Port some existing PaniniJ programs to @PaniniJ.

7

● Benchmark ported @PaniniJ programs and their performance to original PaniniJ
programs.

By the end of the Fall 2015 semester:

● Implement unfinished features of the core @PaniniJ prototype, such as, Capsule
arrays, array return values, and primitive return values.

● Port more PaniniJ benchmark programs to @PaniniJ for use as tests and
benchmarks.

● Investigate means of implementing semantic analyses to test for additional
safety/correctness properties.

● Support for Task, Serial, and Monitor capsule execution strategies.
● Automated selection of appropriate execution policy based on system topology and

capsule performance.

Cost

This project does not have any hardware components and does not require the purchase of
any commercial software. By building on top of research undergone at Iowa State University
we receive a vast pool of theoretical and technical knowledge that we can draw on with no
cost. We expect our project budget to be $0 since there is nothing to be manufactured and we
are working for free.

Market Survey/Literature Review

Our final product will compete with existing PaniniJ tools created within the Laboratory for
Software Design at Iowa State University, in particular, the ​panc​ compiler. Our products are
comparable because they both provide support for capsule-oriented programming. However,
the existing solution has several restrictions that negatively affect its usability for the average
Java programmer. Our project seeks to resolve some of these shortcomings.

PaniniJ currently inhibits the programmer from using standard Java toolchains. A client
needs to use the special ​panc​ compiler. However, our solution is easily integrated via the
classpath by hooking into the standard Java compiler produced by Oracle. ​panc​, on the other
hand, is a fork and extension of the Java compiler produced by Oracle. Our product decouples
the capsule-generation process from a specific version of compiler allowing for portability
across toolchains, compilers, and compiler versions.

Both systems produce comparable capsule systems. The code which our system generates is
directly modeled after the code generated by ​panc​. We have taken advantage of several

8

optimizations that reduce the overhead cost of using @PaniniJ when compared to a
sequential programming model by using the output of ​panc​ as a guide for the output of
@PaniniJ.

Project’s Future

After our work is completed, the project will be released as an open source project on
Sourceforge or Github. It is expected that it will then be maintained and contributed to by the
Iowa State University Laboratory of Software Design’s Panini research group.

If our project is successful and we implement enough functionality to make our product
functionally competitive with the existing ​panc​ compiler implementation, it is expected that
@PaniniJ will replace PaniniJ and ​panc​ in future Panini capsule oriented programming
research. This would mean that the Panini research group would build on @PaniniJ in order to
add additional features to @PaniniJ as the Panini programming model expands.

9

Glossary

Panini A capsule-oriented programming language whose goals are to ease development
of correct, scalable, and portable concurrent software. 2

PaniniJ A capsule-oriented extension of the Java programming language that runs on the
standard JVM platform. 3

Capsule Similar to a process, it defines a set of public operations and also serves as a
memory region for some set of ordinary objects. 4

Capsule-oriented
Programming

A programming paradigm that aims to ease development of concurrent software
systems by allowing abstraction from concurrency-related concerns; entails
breaking down program logic into distinct parts called ​capsule declarations and
composing these parts to form the complete program using ​system​ declaration. 5

Java annotations A form of metadata, provide data about a program that is not part of the program
itself, having no direct effect on the operation of the code they annotate. 6

Java type
annotations

Annotations that are applied to ​type use​, which support improved analysis of
Java programs way of ensuring stronger type checking. 7

Pluggable type
checker

A custom module used in conjunction with the Java compiler to ensure the state
of a variable, with the goal of preventing or detecting all errors of a given variety.

Checker
Framework

A pluggable type checker tool developed at The University of Washington that 8

comes with predefined type checkers and provides a framework for developers to
build their own custom type checkers.

2 http://www.cs.iastate.edu/~panini/about.shtml#what
3 http://www.cs.iastate.edu/~panini/about.shtml#what
4 http://www.cs.iastate.edu/~panini/about.shtml#capsule
5 http://www.cs.iastate.edu/~panini/docs/faq.shtml#q_l_whatis
6 http://docs.oracle.com/javase/tutorial/java/annotations/index.html
7 http://docs.oracle.com/javase/tutorial/java/annotations/type_annotations.html
8 http://types.cs.washington.edu/checker-framework/

10

