
programs and running our generated
outputs through the Java compiler. We
could then run these capsule artifacts to
see whether they behaved as expected.
However, automatic execution of these test
capsule systems has not yet been added to
the project.

This strategy works for capule systems
which follow all of the @PaniniJ syntax
rules, but we also needed to check that all
of our capsule checks worked. For this we
needed to check that malformed inputs
reported appropriate errors.

To test each of these checks, we used
JUnit tests to start the annotation
processor with some malformed input. The
JUnit tests only pass when a panini check
fails.

@PaniniJ
Dr. Hridesh Rajan Dalton Mills David Johnston Trey Erenberger

Project Advisor & Client Webmaster Team Lead Key Concept Holder

Annotation Processor

@Capsule
Template
(.java) Capsule

Artifacts
(.java)

Capsule
Template
Checks

Capsule
Model Capsule

Artifact
Factories

Message
Artifact

Factories

Message
Artifacts
(.java)

Return
Type

Models

Param
Type

Models

Procedure
Models

Design ApproachIntroduction

Technical DetailsDesign Requirements

Testing

Our project provides a maintainable way to allow capsule-oriented programs to be
developed using standard Java tools while still giving the user specialized feedback to
help them adhere to the Panini model.

● Provide a way to create a working concurrent capsule system without having to
manually write any synchronization code.

● Generate artifacts for four basic execution strategies.
● Provide analysis of correctness (based on Panini model).
● Solution must work with standard Java toolchains.
● Capsule syntax must be simple and declarative.
● Provide meaningful feedback to user when they’re doing something against the Panini

model (see Figure 2).

Intended Users & Uses

Java annotation processing is a linear
and relatively restrictive interface for
compiler plugins. Our annotation processor
takes in Java classes annotated with
@Capsule and produce additional artifacts.
These generated artifacts essentially wrap
the user’s code to form an executable
system of concurrent capsules. This lets us
hide complicated (thread-safe) interactions
between capsules hidden from the user.

@PaniniJ is for programmers who want
to have implicitly concurrent code. The
capsule-oriented model is especially useful
for people who care about modularity and
thread safety.

@PaniniJ was designed from the
beginning to be approachable by Java
programmers. Because it is packaged as
an annotation processor, @PaniniJ is easy
to add to any Java project, either by adding
a jar file and enabling the processor, or by
including it as a Maven dependency.

@PaniniJ will also generate errors when
a user violates a some property of the
panini programming model or the @PaniniJ
syntax. In all, we implemented about 45
distinct checks.

An annotation-based realization of Panini
capsule-oriented programming.

Group Dec 15-12 | www.github.com/hridesh/panini | www.paninij.org | www.dec1512.sd.ece.iastate.edu

@PaniniJ was developed using Eclipse,
Maven, and standard Java libraries. We
purposely avoided adding 3rd party code
dependencies as maintainability was one
of our primary concerns.

We mainly utilized the standard Java
package javax.lang.model which includes
the sub-packages element and type within
our annotation processor.

@PaniniJ is an implementation of the
Panini programming model that enables
the use of standard Java tools for capsule-
oriented programming. Panini is a
programming model (i.e. a set of rules for
program behavior) in which certain classes
of concurrency errors (endemic to other
programming models) are not possible.
This programming model has been the
subject of years of research and
development here at Iowa State.

Our project is a replacement for the
existing implementation of the PaniniJ
language (the existing implementation of
Panini). PaniniJ is essentially a fork of the
Sun/Oracle Java compiler which includes
some additional Panini-specific keywords,
syntax, and semantics.

We implemented an annotation
processor, a standard method of hooking
into a standards-compliant Java compiler,
to generate concurrent code based on user-
written templates. What were keywords in
PaniniJ are now Java annotations in
@PaniniJ.

This decision allows the user to write
code for the Panini model while still
allowing him/her to use standard Java
tools.

Unlike its predecessor, @PaniniJ is not a
fork of the Java compiler, so maintainers
do not need with changes to the Java
compiler and language. Additionally, with
@PaniniJ, the user is able to choose
his/her own Java compiler implementation,
rather than being forced to use the PaniniJ
compiler for all of their project’s code.

Before we generate these artifacts, we
also perform some basic checks on and
processing of the user’s input. This process
of taking in Capsule Templates and
generating wrappers and messages occurs
every time the compiler is called. In Eclipse,
this is done every time the user saves
updates to a file.

Figure 2: User error reporting in both Eclipse and Netbeans. When using these IDEs, Panini-specific syntax errors
are reported just as Java errors are reported, with red squiggly lines and context boxes near the error’s source.

We split the project into three main core
modules: the processor, the runtime, and
tests for the processor. This distinction
allows for a smaller runtime jar to be easily
coupled with deployed projects.

We also had modules for spin-off
projects such as benchmarks, analyses,
and examples of the @PaniniJ jar being
used. These modules are not needed to run
or use the @PaniniJ product itself.

Figure 1: Processing pipeline within the @PaniniJ annotation processor. Within the processor,
there are three primary phases: (1) user inputs are checked for Panini-specific errors; (2) a

model is created; (3) concurrent Java source code is generated based on the model.

Problem: The PaniniJ language does not work with existing Java tools.

Need: The PaniniJ language needs better tooling for better developer experience.

Solution: Re-implement PaniniJ as an annotation processor to make the language
more familiar to users and more compatible with existing Java tools.

These errors are reported just as Java
programmers expect: in IDE’s like Eclipse
and Netbeans, these errors are reported
via red squiggly lines and context boxes at
the point of failure; when running the
compiler on the command line, error
messages are printed along with line
numbers.

Developing tests for our annotation
processor was very important, since our
project will be continued on by the ISU
Laboratory for Software Design after we
are finished.

While developing the artifact generation
code, we were able to perform a good deal
of testing simply writing input @PaniniJ

