
Weekly Report
Team Dec 15-12: PaniniJ Eclipse Plugin

Week 3: Feb. 2nd - Feb. 9th

Advisor Dr. Rajan

Client Dr. Rajan

Team Members Dalton Mills
David Johnston
Kristin Clemens
Trey Erenberger

Webmaster
Team Lead
Communication Lead
Key Concept Holder

Weekly Summary

Project Goals: The goal of this project is to make a system which makes the functionality
and safety guarantees of capsules accessible to the programmer. As the project was
originally described, our solution would come in the form of an Eclipse plugin for the PaniniJ
language. However, after some discussions with Dr. Rajan and some experimentation, we
have decided that our project deliverable should instead come in a different form, though it
will still be designed to meet this larger goal.

Changed Project Deliverable: We started this week with several potential project routes. We
narrowed it down to just one through research, discussion with our advisor, and some
prototyping. We now intend to use Java 8’s enhanced annotation features to automatically
generate .java source code for capsules from Java class definitions.

One reason for the shift away from the previously proposed Xtext/Xtend solution is the
relative immaturity and volatility of the Xtext/Xtend framework.

Furthermore, an annotation-based capsule framework has many potential advantages over
the existing PaniniJ compiler. For example, our solution should be an easier way for a user to
build systems with Capsules, because our proposed system will be built within the Java
language and should seamlessly integrate into standard Java build environments (i.e. both
the javac and Eclipse toolchains). Integrating PaniniJ capsules into larger systems is much
less straightforward. An annotation solution may therefore be more likely to be used by Java
programmers.

The end product will be a JAR file that will be included to projects in order to allow for the use
of @Capsule annotations. Our JAR will hook into the standard oracle java compiler to produce
extended thread-safe versions of the classes annotated with @Capsule.

Current and Future Work: Proof of concept work on the initial compiler hook (i.e. annotation
processor) was very successful. A very basic working prototype is now able to automatically
generate basic capsule functionality from a template class.

In the future, we expect that our project will become focused on integrating the safety-check
algorithms developed by Dr. Rajan’s research lab into a user-friendly annotation-based
system. It will take time to find out which of these algorithms can be integrated into the
annotation solution.

Technical Progress

This week we explored several options for implementing our project’s goals. David produced
a proof of concept for the annotation approach that augments java classes with preliminary
capsule functionality. This prototype demonstrates that it is possible to hook into the
compilation process and produce intermediary java files that will then be compiled and usable
elsewhere in a Java project.

Example: The first image below shows a .java file which includes a class annotated with
@Capsule. The subsequent image shows the .java file generated from the original
@Capsule class. This automatic source generation process is performed by an @Capsule
annotation processor which we have implemented.

Meetings

Weekly Administrative Meeting
Members Present: All
Additional Participants: N/A
Date & Location: Tuesday 3 of February; Molecular Biology 1414
Minutes:
● Discussed prototyping and proof of concept tasks for coming week
● Disseminated research findings
● Agreement to set hard deadlines for project sprints
● Pluggable Type checker research needed
● We need more documentation

Bi-Weekly Advisor Meeting
Members Present: All
Additional Participants: Dr. Rajan
Date & Location: Friday 6 of February; Atanasoff 101
Minutes:
● David explained his initial proof of concept work to group and Dr. Rajan.
● Dr. Rajan and group decided that we should shift in direction of annotation processor

and pluggable type checker.

Weekly Collaboration Meeting
Date & Location: Sunday 8 of February; Google Hangouts
Members Present: All
Additional Participants:
Minutes:
● Set up of David's Test project

○ Installing ant, maven
○ How to drop the product (capsule-generator) into a project

● David presents Test project for group
● Discussion of constructor implementations

○ Factory for each thread scheme

○ Factory.make() overloaded with the different signatures of 'template class'
constructors

● Discussion of end product deliverable
○ How to handle dependencies for generator class jar
○ preventing jar bloat
○ not tied to certain build scheme (maven, ant, etc.)

● Future tasks: -Refactoring test project to cultivate best practices (David/Trey)
○ Research into basic validation for capsules, pluggable type checker

(Kristin/Dalton)
○ Test code best practices exploration (Kristin)
○ Further development of SD website (Dalton)

● Concluded

Individual Hourly Contributions
Trey Erenberger 6.5 Hours

David Johnston 17 Hours

Kristin Clemens 4 Hours

Dalton Mills 6 Hours

Tentative Plans for Week 3

For the next week we have narrowed our body of research to topics within this annotation
approach. We will continue to do proof of concept work with the capsule-generator project
that David implemented this week. We will also be looking to define a specific set of features
for our deliverable and then validate those during our meeting with Dr. Rajan. For next week
we have set out specific goals for each member of the team. Dalton is going to look into
pluggable type checkers. His goal is to get just one type check working in a branch of the
current project. Trey is working on adding constructors to the generated java source files.

