Weekly Report

Team Dec 15-12: @PaniniJ
Week 5: Feb. 16" - Feb. 22"

Advisor Dr. Rajan

Client Dr. Rajan

Team Members Dalton Mills Webmaster
David Johnston Team Lead
Kristin Clemens Communication Lead
Trey Erenberger Key Concept Holder

Weekly Summary

Work this week on the project was focused on two things. First, we drafted a first version of
the Project Plan document and sent it to Dr. Rajan for review, which he approved. The Project
Plan was submitted on Saturday evening. Next, we looked more closely at the prior work that
is a part of the PaniniJ project. In particular, we have been reading the code in
org.paninij.runtime and the intermediate Java code generated by panc (made available
using the -XD-printflat flag) in order to understand how they interact.

Thursday evening, David observed a potential conflict between the way that we were
expecting to generate capsule classes and the way that runtime code is generated. This issue
was described it in an email, “SE 491: Template Class Name Conflicts with Auto-Generated
Interface Name.”

On Friday, while discussing this issue and some other potential project risks with Dr. Rajan, it
was agreed that @PaniniJ-panc interoperability should not be a top priority for our project. As
such our goal is to build a solution which uses existing the runtime classes but with some
modifications.

On Sunday, the group spent time analyzing the source code artifacts generated by panc,
especially the parts which relate to duck futures. We performed a semi-systematic analysis of
the code generated by procedures of various shapes. Our interpretation of the results has led
us to believe that a simpler duck-future-generation process is possible. This alternative
solution would preserve the one-object-per-procedure-invocation constraint, increase
procedure invocation performance, and reduce the variety of duck future classes which need
to be generated. We will be further discussing and investigating this potential solution this
week.



Technical Progress

@ Dalton did a lot of research on pluggable type checkers, more specifically, the Checker
Framework. Type checking is an area of research done by the University of
Washington where they developed the Checker Framework for Java 1.6 and 1.7. Much
of what they accomplished was included in Java 1.8 (JSR 308
http://types.cs.washington.edu/jsr308/) Since type annotation processing is an
immature area for Java, the documentation is underwhelming. Type annotation
processing will require much more in depth research to see exactly how it can be used
to check capsule integrity. Dalton also continued to work on the project website.

® David performed some refactoring of the existing capsule-generation code that should
make it easier to create multiple source-code artifacts from a single template class.
(This work can be found on the [capsule-generation/multiple-artifacts]
branch.) He also drafted some ideas about what capsule initialization and wiring might
look like from the template-programmer’s perspective. (This work can be found on the
[examples/original-benchmarks] branch.) The basic idea is to break up state
initialization, capsule design, and capsule wiring into three separate functions which
can be called by the runtime as appropriate. The intention is that the contents of these
functions can be relatively declarative, short, and follow simple conventions. At some
point in the future, we hope that these conventions can be enforced by the compiler.

® Trey looked into the changes necessary to allow for the code generated from our
project to be compatible with the existing org.paninij runtime. This involved
scrutinizing the java code created during the panc compile process, understanding
the transformations that occurred, and thinking about how java 1.8 changes what we
are able to do during this step.

® Kristin participated in analyzing the java code generated during the panc compile
process and identified a number of areas that will require either a complete rework of
the source or, at least, heavy refactoring.


http://types.cs.washington.edu/jsr308/

Meetings

Weekly Administrative Meeting
Members Present: All
Additional Participants: N/A
Date & Location: Tuesday 17 of February; Molecular Biology 1414
Minutes:
e Start: 2:50

® Kiristin report on Maven progress:
O Going well, David ironing out some errors
O On GitHub issues
® David reporton org.paninij.runtime integration:
O Issues with dependencies in the Panini runtime.
O Attempting to pull in the project manually and comment out the lines/modules
causing the problems.
O Wil report the results of this reduction to determine what needs to be done on the
panini.runtime package.
O Possible Maven wrapping of the pieces of org.paninij.runtime to allow for
dependencies to be resolved in smaller chunks.
® Dalton going to add a maven module and work on type checking this week
O Might spin off into a separate repo to get a proof of concept working. Type
checking is becoming more of a 2nd semester objective, but we would still like
proof that the idea will work.
® Trey going to work on refactoring tasks once Maven transition is stabilized.
O Matching Dr. Rajan's specified conventions [interoperability]
® Group going to transition from trello to github issues and wiki to store information
O Wil allow more transparent progress and task tracking.
O Will allow documentation to be aggregating in the final place.
® Module Diagram Task
O Map out module connections
O High level view of our project to demonstrate how the system is composed
O May depend on understanding of the panini.runtime which could potentially delay
this.
® Concluded 3:37



Extra Collaboration Meeting

Date & Location: Thursday 19 of February, Google Hangouts
Members Present: All

Length: 5 hours

Purpose: Draft Project Plan

Result: Project Plan completed, submitted to Dr. Rajan for review.

Bi-Weekly Advisor Meeting

Members Present: Trey, David, Dalton
Additional Participants: Dr. Rajan
Date & Location: Friday 20 of February; Atanasoff 101
Minutes:
@ Start: 10:30am
® David explained the naming conflict issue he previously described in his email “SE 491:
Template Class Name Conflicts with Auto-Generated Interface Name”.
® Dr. Rajan agreed that @PaniniJ-panc interoperability was not a top priority (i.e. not a
functional requirement). There is no problem modifying and adapting existing runtime
files to better fit our capsule-generation system.
® Dr. Rajan indicated that we should expect some difficulties associated with wiring
capsules together.
® Dr. Rajan reiterated a few priorities for our project:

O User-defined code that serves as input to our capsule-generation system
should be not generate any Eclipse warnings.

O Capsule systems generated by @Paninid must be performant. Performance
should be comparable with capsule systems generated by panc. We will need
to implement benchmarks to empirically compare our @Paninid with panc.

® End: 10:55am



Weekly Collaboration Meeting
Date & Location: Sunday 22 of February; Google Hangouts
Members Present: All
Additional Participants:

Minutes:

@ Start: 1:20PM
® Testing of procedure shapes when compiled with panc

@)
(@)

O

Examination of Panini example: HelloWorld.java
Built ProcShapes.java with various method shapes to analyze code generated
by panc.
Ran through panc in several waves.
Examination of generated duck classes, their superclasses, and how they are
used.
Building understanding of how duck classes are grouped when generated.
m Ducks are currently grouped by return type and capsuleName.
m Possible to change the way this works to make more sense.
® Looking primarily at the generated "enum" that is used to switch
the duck message to the method it needs to call.
® Duck constructor assigns parameters to every argument 'hole’
on every method call.

® Building future ducks.
® Future work:

O

O O O O O

O

Looking into making duck class generation more sane.

Adding interfaces with default keywords to handle code duplication.
Changing the way ducks are grouped to cover multiple capsules.

Using type parameters to simplify duck interfaces/classes.

Code generation helper methods.

Making generated code and methods that result in generated code more
friendly.

Creating classes that handle various portions of source code.

® End: 6:20PM



Individual Hourly Contributions

Trey Erenberger 15 Hours
David Johnston 15 Hours
Kristin Clemens 10 Hours
Dalton Mills 17 Hours

Culumulative Time Contribution

Trey Erenberger 42.5 Hours
David Johnston 57.7 Hours
Kristin Clemens 33.5 Hours

Dalton Mills 42 Hours



Tentative Plans for Week 6

The focus of the coming week will be on duck futures. We need to plan out how the duck
futures will be generated from a capsule’s procedure signatures. We will be meeting Monday
(Feb. 23nd) at 1:00pm with the specific purpose of identifying what tasks need to be done and
who will tackle these tasks.



