Weekly Report

Team Dec 15-12: @PaniniJ
Week 6: Feb. 23" - Mar. 1

Advisor Dr. Rajan
Client Dr. Rajan
Team Members Dalton Mills Webmaster
David Johnston Team Lead
Kristin Clemens Communication Lead
Trey Erenberger Key Concept Holder
Weekly Summary

The main work this past week was on the design of duck futures. We spent more time
analyzing the existing implementation, categorizing different cases that we will want to
support, and designing what the auto-generated duck future implementations should look like.

Technical Progress

All members of the group have been investigating and discussing issues related to the
design and implementation of Duck futures. Some additional individual contributions include.

e Dalton began implementing support for automatic signature generation from

@Signature-annotated client interfaces.

e David wrote-up some of his thoughts on the implementation of Duck futures on the
GitHub wiki. David has also been discussing with Kristin some ideas for testing our

capsule implementation.

e Trey is working on implementing duck generation, researching model testing

apparatuses and test code transformation.

e Kiristin investigated alternative strategies for implementing duck futures, in particular
using composition to simplify implementation and using reflection to overcoming the
problems posed by the future keyword. She has additionally worked with David to


https://github.com/dwtj/panini/wiki/Duck-Futures-RFC

formulate a testing mechanism which is able to use an arbitrary template class as an
oracle for the capsules which it generates. This would ideally be built upon unit tests
written by the user for the template class.

Meetings

Weekly Administrative Meeting
Members Present: All
Additional Participants: N/A
Date & Location: Tuesday 24 of February; Molecular Biology 1414
Minutes:
e Start: 3:00
e Explanation of proposed class hierarchy for the generated capsule classes.
o Separation of runtime 'views' of the capsule and user defined signatures
o Factoring functionality into the shared interfaces to separate the paninij
functions from the user defined code.
e Discussion of @paninij vs @Capsule, @Signature
o Prefer @capsule and @signature as it is more formal and declarative
o Prefer @capsule and @signature in case additional types are added that
cannot infer their type by class and interface
e Demonstration of wrapping primitives in ducks
o Final class problem
o Primitive types
= cannot put args onto message queue as primitives will need to be
wrapped in objects without extra cost of object creation.
e Work objectives
o Dalton working on signature generation
o Kiristin working on testing generated classes and ‘what’ to test versus ‘how’
e Discussion and research of alternatives to ducks extending the classes they hold.
e End: 5:40



Bi-Weekly Advisor Meeting

Members Present: All
Additional Participants: Dr. Rajan
Date & Location: Friday 27 of February; Atanasoff 101
Minutes:
e Discussed David's Duck Future Design Write-Up
o No unnecessary method calls.
o Stick closely to the existing duck future implementation from PaniniJ for
performance reasons.
e Plan for Java 1.9
o For use with CheckerFramework.
e Discussion of testing
o Flexible creation of generated tests for generated code.
o Minimize hard-coded test cases.
o Review tests that already exist for pan-c to get ideas for the kinds of tests to
write.
Reuse pre-existing tests wherever possible.
To test performance, run PaniniJ generated code and compare to existing
benchmarks for pan-c generated code.

Weekly Collaboration Meeting
Date & Location: Sunday 1 of March; Google Hangouts
Members Present: All
Additional Participants:
Minutes:
e Reuvisit of project configuration using maven tools
e discussion of tasks
Dalton: signature generation
Kristin: testing harness for panini programs
Trey: duck generation
David: capsule generation
e Panini and Testing
o template model as oracle for panini generated system
o converting user unit tests into panini equivalents
o connecting user unit tests to generated
e Duck data structures

O O O

o



o prevent duplicate duck classes

e Generation Constraints
o inherited method’s ducks problem
o standardization of artifact creation

Individual Hourly Contributions

Trey Erenberger 7.5 Hours
David Johnston 7.3 Hours
Kristin Clemens 6 Hours

Dalton Mills 6.5 Hours

Culumulative Time Contribution

Trey Erenberger 50 Hours
David Johnston 65 Hours
Kristin Clemens 39.5 Hours
Dalton Mills 48.5 Hours

Tentative Plans for Week 7

The focus of the coming week will move from designing duck futures to implementing the
duck future generation code. We should also finish drafting an implementation of
signature-generation code.



